Is the Subset Conditional Implication Universally True?

  • Thread starter Thread starter Zarlucicil
  • Start date Start date
Zarlucicil
Messages
13
Reaction score
2
I've used the following implication (conditional...whatever you want to call it) in a few proofs and was wondering if it's actually is true. I incorporated it into my proofs because it seemed to make obvious sense, but I'm not sure if I'm overlooking something- obvious or subtle.

T \subseteq S \Rightarrow \exists s' \in S \& \exists s'' \in S \ni [s' \leq t \leq s''], \forall t \in T.

English: If T is a subset of S, then there exists an s' in S and an s'' in S such that t is greater than or equal to s' and less than or equal to s'', for all t in T.
 
Last edited:
Physics news on Phys.org
First, we are not talking about general sets. In order for the inequalities to make sense, S must be a linearly ordered set- probably the set or real numbers. And it looks to me like, in order for that statement to be true, S and T must be intervals specifically.
 
HallsofIvy said:
S must be a linearly ordered set

Yes- I'm sorry. S is a subset of the real numbers.
HallsofIvy said:
And it looks to me like, in order for that statement to be true, S and T must be intervals specifically.

I suppose that might be true, but I can't think of a counterexample involving non-interval sets nor have I found a way to disprove the implication for non-interval sets. It seems to be true for at least some non-interval sets. For example, when T = {-3.2, -1, 7} and S = {-4, -3.2, -1, 0, 7, 9}. Hmm, or are these example sets considered to be "intervals" because they can be written as the union of intervals? --> T = [-3.2, -3.2] U [-1, -1] U [7, 7]. If they are considered to be intervals, then I don't know what wouldn't be considered an interval.
 
This is true for any ordered set S. Just pick s'=s''=t
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top