Is there a better way to solve this proof using Levi Civita symbols?

  • Thread starter Thread starter NexusN
  • Start date Start date
  • Tags Tags
    Proof
NexusN
Messages
23
Reaction score
0

Homework Statement


\nabla \cdot(\vec E \times \vec H)=\vec H\cdot(\nabla \times \vec E) - \vec E\cdot(\nabla \times \vec H)

Homework Equations


The Attempt at a Solution


\begin{array}{l}<br /> \nabla \cdot(\vec E \times \vec H)\\<br /> = \left[ {\frac{1}{{{h_1}{h_2}{h_3}}}\left( {{{\hat a}_1}\frac{\partial }{{\partial {l_1}}}{h_2}{h_3} + {{\hat a}_2}\frac{\partial }{{\partial {l_2}}}{h_1}{h_3} + {{\hat a}_3}\frac{\partial }{{\partial {l_3}}}{h_1}{h_2}} \right)} \right]\cdot[({{\hat a}_1}{E_1} + {{\hat a}_2}{E_2} + {{\hat a}_3}{E_3}) \times ({{\hat a}_1}{H_1} + {{\hat a}_2}{H_2} + {{\hat a}_3}{H_3})]\\<br /> = \left[ {\frac{1}{{{h_1}{h_2}{h_3}}}\left( {{{\hat a}_1}\frac{\partial }{{\partial {l_1}}}{h_2}{h_3} + {{\hat a}_2}\frac{\partial }{{\partial {l_2}}}{h_1}{h_3} + {{\hat a}_3}\frac{\partial }{{\partial {l_3}}}{h_1}{h_2}} \right)} \right]\cdot\left| {\begin{array}{*{20}{c}}<br /> {{{\hat a}_1}}&amp;{{{\hat a}_2}}&amp;{{{\hat a}_3}}\\<br /> {{E_1}}&amp;{{E_2}}&amp;{{E_3}}\\<br /> {{H_1}}&amp;{{H_2}}&amp;{{H_3}}<br /> \end{array}} \right|\\<br /> = \left[ {\frac{1}{{{h_1}{h_2}{h_3}}}\left( {{{\hat a}_1}\frac{\partial }{{\partial {l_1}}}{h_2}{h_3} + {{\hat a}_2}\frac{\partial }{{\partial {l_2}}}{h_1}{h_3} + {{\hat a}_3}\frac{\partial }{{\partial {l_3}}}{h_1}{h_2}} \right)} \right]\cdot[{{\hat a}_1}({E_2}{H_3} - {H_2}{E_3}) + {{\hat a}_2}({E_3}{H_1} - {H_3}{E_1}) + {{\hat a}_3}({E_1}{H_2} - {H_1}{E_2})]\\<br /> = \frac{1}{{{h_1}{h_2}{h_3}}}\left\{ {\frac{\partial }{{\partial {l_1}}}[{h_2}{h_3}({E_2}{H_3} - {H_2}{E_3})] + \frac{\partial }{{\partial {l_2}}}[{h_1}{h_3}({E_3}{H_1} - {H_3}{E_1})] + \frac{\partial }{{\partial {l_3}}}[{h_1}{h_2}({E_1}{H_2} - {H_1}{E_2})]} \right\}<br /> \end{array}

\begin{array}{l}<br /> \vec H\cdot(\nabla \times \vec E) - \vec E\cdot(\nabla \times \vec H)\\<br /> = ({{\hat a}_1}{H_1} + {{\hat a}_2}{H_2} + {{\hat a}_3}{H_3})\cdot\frac{1}{{{h_1}{h_2}{h_3}}}\left| {\begin{array}{*{20}{c}}<br /> {{{\hat a}_1}{h_1}}&amp;{{{\hat a}_2}{h_2}}&amp;{{{\hat a}_3}{h_3}}\\<br /> {\frac{\partial }{{\partial {l_1}}}}&amp;{\frac{\partial }{{\partial {l_2}}}}&amp;{\frac{\partial }{{\partial {l_3}}}}\\<br /> {{h_1}{E_1}}&amp;{{h_2}{E_2}}&amp;{{h_3}{E_3}}<br /> \end{array}} \right| - ({{\hat a}_1}{E_1} + {{\hat a}_2}{E_2} + {{\hat a}_3}{E_3})\cdot\frac{1}{{{h_1}{h_2}{h_3}}}\left| {\begin{array}{*{20}{c}}<br /> {{{\hat a}_1}{h_1}}&amp;{{{\hat a}_2}{h_2}}&amp;{{{\hat a}_3}{h_3}}\\<br /> {\frac{\partial }{{\partial {l_1}}}}&amp;{\frac{\partial }{{\partial {l_2}}}}&amp;{\frac{\partial }{{\partial {l_3}}}}\\<br /> {{h_1}{H_1}}&amp;{{h_2}{H_2}}&amp;{{h_3}{H_3}}<br /> \end{array}} \right|\\<br /> = ({{\hat a}_1}{H_1} + {{\hat a}_2}{H_2} + {{\hat a}_3}{H_3})\cdot\frac{1}{{{h_1}{h_2}{h_3}}}[{{\hat a}_1}({h_1}\frac{\partial }{{\partial {l_2}}}{h_3}{E_3} - {h_1}\frac{\partial }{{\partial {l_3}}}{h_2}{E_2}) + {{\hat a}_2}({h_2}\frac{\partial }{{\partial {l_3}}}{h_1}{E_1} - {h_2}\frac{\partial }{{\partial {l_1}}}{h_3}{E_3}) + {{\hat a}_3}({h_3}\frac{\partial }{{\partial {l_1}}}{h_2}{E_2} - {h_3}\frac{\partial }{{\partial {l_2}}}{h_1}{E_1})]\\<br /> - ({{\hat a}_1}{E_1} + {{\hat a}_2}{E_2} + {{\hat a}_3}{E_3})\cdot\frac{1}{{{h_1}{h_2}{h_3}}}[{{\hat a}_1}({h_1}\frac{\partial }{{\partial {l_2}}}{h_3}{H_3} - {h_1}\frac{\partial }{{\partial {l_3}}}{h_2}{H_2}) + {{\hat a}_2}({h_2}\frac{\partial }{{\partial {l_3}}}{h_1}{H_1} - {h_2}\frac{\partial }{{\partial {l_1}}}{h_3}{H_3}) + {{\hat a}_3}({h_3}\frac{\partial }{{\partial {l_1}}}{h_2}{H_2} - {h_3}\frac{\partial }{{\partial {l_2}}}{h_1}{H_1})]\\<br /> = \frac{1}{{{h_1}{h_2}{h_3}}}({h_1}{H_1}\frac{\partial }{{\partial {l_2}}}{h_3}{E_3} - {h_1}{H_1}\frac{\partial }{{\partial {l_3}}}{h_2}{E_2} + {h_2}{H_2}\frac{\partial }{{\partial {l_3}}}{h_1}{E_1} - {h_2}{H_2}\frac{\partial }{{\partial {l_1}}}{h_3}{E_3} + {h_3}{H_3}\frac{\partial }{{\partial {l_1}}}{h_2}{E_2} - {h_3}{H_3}\frac{\partial }{{\partial {l_2}}}{h_1}{E_1})\\<br /> - \frac{1}{{{h_1}{h_2}{h_3}}}({h_1}{E_1}\frac{\partial }{{\partial {l_2}}}{h_3}{H_3} - {h_1}{E_1}\frac{\partial }{{\partial {l_3}}}{h_2}{H_2} + {h_2}{E_2}\frac{\partial }{{\partial {l_3}}}{h_1}{H_1} - {h_2}{E_2}\frac{\partial }{{\partial {l_1}}}{h_3}{H_3} + {h_3}{E_3}\frac{\partial }{{\partial {l_1}}}{h_2}{H_2} - {h_3}{E_3}\frac{\partial }{{\partial {l_2}}}{h_1}{H_1})\\<br /> = \frac{1}{{{h_1}{h_2}{h_3}}}[({h_1}{H_1}\frac{\partial }{{\partial {l_2}}}{h_3}{E_3} + {h_3}{E_3}\frac{\partial }{{\partial {l_2}}}{h_1}{H_1}) - ({h_1}{H_1}\frac{\partial }{{\partial {l_3}}}{h_2}{E_2} + {h_2}{E_2}\frac{\partial }{{\partial {l_3}}}{h_1}{H_1}) + ({h_2}{H_2}\frac{\partial }{{\partial {l_3}}}{h_1}{E_1} + {h_1}{E_1}\frac{\partial }{{\partial {l_3}}}{h_2}{H_2})\\<br /> - ({h_2}{H_2}\frac{\partial }{{\partial {l_1}}}{h_3}{E_3} + {h_3}{E_3}\frac{\partial }{{\partial {l_1}}}{h_2}{H_2}) + ({h_3}{H_3}\frac{\partial }{{\partial {l_1}}}{h_2}{E_2} + {h_2}{E_2}\frac{\partial }{{\partial {l_1}}}{h_3}{H_3}) - ({h_3}{H_3}\frac{\partial }{{\partial {l_2}}}{h_1}{E_1} + {h_1}{E_1}\frac{\partial }{{\partial {l_2}}}{h_3}{H_3})]\\<br /> = \frac{1}{{{h_1}{h_2}{h_3}}}(\frac{\partial }{{\partial {l_2}}}{h_1}{h_3}{E_3}{H_1} - \frac{\partial }{{\partial {l_3}}}{h_1}{h_2}{E_2}{H_1} + \frac{\partial }{{\partial {l_3}}}{h_1}{h_2}{E_1}{H_2} - \frac{\partial }{{\partial {l_1}}}{h_2}{h_3}{E_3}{H_2} + \frac{\partial }{{\partial {l_1}}}{h_2}{h_3}{E_2}{H_3} - \frac{\partial }{{\partial {l_2}}}{h_1}{h_3}{E_1}{H_3})\\<br /> = \frac{1}{{{h_1}{h_2}{h_3}}}\{ \frac{\partial }{{\partial {l_1}}}[{h_2}{h_3}({E_2}{H_3} - {E_3}{H_2})] + \frac{\partial }{{\partial {l_2}}}[{h_1}{h_3}({E_3}{H_1} - {E_1}{H_3})] + \frac{\partial }{{\partial {l_3}}}[{h_1}{h_2}({E_1}{H_2} - {E_2}{H_1})]\} \\<br /> = \nabla \cdot(\vec E \times \vec H)<br /> \end{array}
Thank you so much for your kind attention!
 
Physics news on Phys.org
Well the proof is probably correct but are you sure you aren't supposed to be doing a more 'refined' method than just writing out the whole definition and 'brute forcing' it.

As an example, in index notation you can do something like

\nabla \cdot (\mathbf{u} \times \mathbf{v}) = \frac{\partial}{\partial x_i} (\epsilon_{ijk} u_j v_k )

= \epsilon_{ijk} \frac{\partial u_j}{\partial x_i}v_k + \epsilon_{ijk}u_j \frac{\partial v_k}{\partial x_i}

= \left( \epsilon_{kij} \frac{\partial u_j}{\partial x_i}\right)v_k - \left( \epsilon_{jik} \frac{\partial v_k}{\partial x_i}\right)u_j

= (\nabla \times \mathbf{u}) \cdot \mathbf{v} - (\nabla \times \mathbf{v}) \cdot \mathbf{u}

This is probably not the method you are 'supposed' to do but my point is that there are much nicer ways of doing it.
 
Inferior89 said:
Well the proof is probably correct but are you sure you aren't supposed to be doing a more 'refined' method than just writing out the whole definition and 'brute forcing' it.

As an example, in index notation you can do something like

\nabla \cdot (\mathbf{u} \times \mathbf{v}) = \frac{\partial}{\partial x_i} (\epsilon_{ijk} u_j v_k )

= \epsilon_{ijk} \frac{\partial u_j}{\partial x_i}v_k + \epsilon_{ijk}u_j \frac{\partial v_k}{\partial x_i}

= \left( \epsilon_{kij} \frac{\partial u_j}{\partial x_i}\right)v_k - \left( \epsilon_{jik} \frac{\partial v_k}{\partial x_i}\right)u_j

= (\nabla \times \mathbf{u}) \cdot \mathbf{v} - (\nabla \times \mathbf{v}) \cdot \mathbf{u}

This is probably not the method you are 'supposed' to do but my point is that there are much nicer ways of doing it.

Thank you so much for your reply.
At the moment I did not have other ideas so I just brute-forced it by expanding.
I am now learning some vectors in the year 2 of electronic engineering.

I am new to your method and I think I will need to take some time to understand it thoroughly, but it is really nice and short!
Thanks again for your help.
 
t
NexusN said:
Thank you so much for your reply.
At the moment I did not have other ideas so I just brute-forced it by expanding.
I am now learning some vectors in the year 2 of electronic engineering

I am new to your method and I think I will need to take some time to understand it thoroughly, but it is really nice and short!
Thanks again for your help.
This is levi civita symbols. Been an engineering student myself, this is not something they teach use in engineering mathematics.

I think your method would suffice considering you were probably not taught a better way of doing it. Alternatively, you could look up levi civita symbols and the kronecker delta function.
 
╔(σ_σ)╝ said:
t
This is levi civita symbols. Been an engineering student myself, this is not something they teach use in engineering mathematics.

I think your method would suffice considering you were probably not taught a better way of doing it. Alternatively, you could look up levi civita symbols and the kronecker delta function.

I am interested in that, thank you for your suggestion:smile:
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top