Is there a connection between EPR and crossing symmetry in Feynman diagrams?

  • Thread starter Thread starter stevendaryl
  • Start date Start date
  • Tags Tags
    Epr Symmetry
stevendaryl
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
Messages
8,943
Reaction score
2,954
This is sort of a nebulous question, but I'm wondering if anyone knows of analysis of the EPR experiment from the point of view of crossing symmetry for Feynman diagrams?
crossing.jpg

In the above diagram, I've drawn a very simple particle interaction diagram. The same diagram can be interpreted in two different ways, and the corresponding amplitudes are related in some analytic way that I'm not going to get into the details of. The two different ways are:

  1. A neutral, massive, spin-zero particle, X^0 (not supposed to be any specific particle, but maybe you can think of it as a neutral pion) collides with an electron, and is absorbed, deflecting the electron.
  2. The X^0 particle decays into an electron/positron pair.
These are, from the point of view of quantum field theory, very similar processes, which is why they have very similar Feynman diagrams. But now, I'd like to analyze these from the point of spin measurements at points A and B in the diagram.

In the first interpretation, we measure the spin of the electron at point A, along some axis, \vec{A} and find in say spin-up in that direction. Later, at point B, we measure the spin along a second axis, \vec{B}. Assuming that the original e^{-1}, X^0 system had orbital angular momentum zero (I'm not sure how you might insure that this is true...which might be a weakness of my argument, such as it is), then we can use conservation of total angular momentum to conclude that the electron's spin doesn't change between points A and B. So the probability of measuring spin-up at B is given by the probability of measuring spin-up along \vec{B} given an electron that was prepared to be spin-up along \vec{A}. That's given by: P = \frac{1}{2} (1 + \vec{A} \cdot \vec{B}) (I think).

So there's no mystery here. It has a perfectly intuitive "hidden variable" explanation: After the measurement at A, the electron is in an eigenstate of \sigma_{\vec{A}}, and it stays in that eigenstate until point B. The measurement at B gives a probabilistic outcome, but it's a local nondeterministic decision.

Now, look at the same thing from the point of view of the second interpretation:

Here, an X^0 particle decays into an electron/positron pair in a state with total angular momentum zero. In this interpretation, measurements A and B are simultaneous (or more generally, at a spacelike separation). But if the measurement of spin at A along axis \vec{A} yields spin-up, then the probability of getting spin-up along \vec{B} at point B is given by:

P = \frac{1}{2} (1 - \vec{A} \cdot \vec{B})

which is almost exactly the same (except for the minus sign, which I think is just due to the twisting of the diagram to go from the first interpretation to the second).

The second interpretation leads to the usual spin-1/2 EPR mysteries. The first interpretation is completely non-mysterious. But quantum mechanically, they are described by almost exactly the same mathematics.

I don't really have a coherent question to ask about this, but the similarity of the two processes makes me feel that their explanations should be similar, as well. So either there should be a nonmysterious explanation for the second process, or we should be able to see both of them as equally mysterious.

Any thoughts, or pointers to papers relating EPR to crossing symmetry?
 
Physics news on Phys.org
Nice. But why do you feel one process is more mysterious than the other?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!

Similar threads

Replies
45
Views
3K
Replies
4
Views
1K
Replies
1
Views
2K
Replies
6
Views
2K
Replies
40
Views
2K
Replies
12
Views
3K
Replies
3
Views
634
Replies
5
Views
2K
Replies
5
Views
2K
Back
Top