MHB Is There a Larger Interval Where \(k^2 + k + n\) Generates Only Primes?

  • Thread starter Thread starter mathbalarka
  • Start date Start date
  • Tags Tags
    Polynomials
AI Thread Summary
The discussion centers on the expression \(k^2 + k + n\) and its ability to generate prime numbers for positive integers \(k\) within the interval \((0, (n/3)^{1/2})\). Participants explore the possibility of identifying a larger interval where this expression consistently yields primes. The Heegner-Stark theorem is mentioned as a basis for understanding this phenomenon, but there is a challenge to demonstrate the result without relying on this theorem or the concept of class-1 numbers. A solution to the problem is provided by one participant, prompting further exploration of the topic. The conversation highlights the mathematical intricacies involved in prime generation through polynomial expressions.
mathbalarka
Messages
452
Reaction score
0
Given that $k^2 + k + n$ is always prime for all positive integer $k$ in the interval $\left (0, (n/3)^{1/2} \right )$. Find the largest interval for which the same can be stated.

This easily follows from Heegner-Stark theorem, but can you show the same bypassing it, without going through the finititude of class-1 numbers?
 
Mathematics news on Phys.org
One can find my solution below :

Let $m$ be the least integer for which $f(m)$ is composite, where $f(x) = x^2 + x + n$.

As the hypothesis go, $m > \sqrt{n/3}$, hence $n < 3m^2$.

Let $p$ be the smallest prime dividing $f(m)$. We get then that $p \leq \sqrt{f(m)}$.

$$p^2 \leq f(m) < m^2 + m + 3m^2 < (2m + 1)^2$$

Hence, $p \leq 2m$.

Now, consider the product $\prod_{k = 0}^{m-1} \left [ f(m) - f(k) \right ]$. If we factor out $f(m) - f(k)$ as $(m - k)(m + k + 1)$, this gives :

$$\prod_{k = 0}^{m-1} \left [ f(m) - f(k) \right ] = \prod_{k = 0}^{m-1} \left [ (m - k)(m + k + 1) \right ] = (2m)!$$

As $p \leq 2m$, $p$ divides $(2m)!$, hence $p$ divides in turn on of the factors $(m - \mathcal{l})(m + \mathcal{l} + 1)$, implying $p \leq m + \mathcal{l} + 1$ for some $\mathcal{l} \leq m - 1$.

Also, as a consequence, $p$ divides $f(m) - f(\mathcal{l})$, and since $p$ also divides $f(m)$, p must divide $f(\mathcal{l})$. By the definition of $m$, $f(\mathcal{l})$ is prime, hence $ p = f(\mathcal{l}) $. This can equivalently be stated as $p - \mathcal{l} = \mathcal{l}^2 + n$.

Combined together with the inequality before, we have :

$$m + 1 \geq p - \mathcal{l} = \mathcal{l}^2 + n \geq n$$

Hence, the largest possible interval for which $f(x)$ is prime in general, is $ ( 0, n - 1) $. $\blacksquare$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top