MHB Is There a Larger Interval Where \(k^2 + k + n\) Generates Only Primes?

  • Thread starter Thread starter mathbalarka
  • Start date Start date
  • Tags Tags
    Polynomials
Click For Summary
The discussion centers on the expression \(k^2 + k + n\) and its ability to generate prime numbers for positive integers \(k\) within the interval \((0, (n/3)^{1/2})\). Participants explore the possibility of identifying a larger interval where this expression consistently yields primes. The Heegner-Stark theorem is mentioned as a basis for understanding this phenomenon, but there is a challenge to demonstrate the result without relying on this theorem or the concept of class-1 numbers. A solution to the problem is provided by one participant, prompting further exploration of the topic. The conversation highlights the mathematical intricacies involved in prime generation through polynomial expressions.
mathbalarka
Messages
452
Reaction score
0
Given that $k^2 + k + n$ is always prime for all positive integer $k$ in the interval $\left (0, (n/3)^{1/2} \right )$. Find the largest interval for which the same can be stated.

This easily follows from Heegner-Stark theorem, but can you show the same bypassing it, without going through the finititude of class-1 numbers?
 
Mathematics news on Phys.org
One can find my solution below :

Let $m$ be the least integer for which $f(m)$ is composite, where $f(x) = x^2 + x + n$.

As the hypothesis go, $m > \sqrt{n/3}$, hence $n < 3m^2$.

Let $p$ be the smallest prime dividing $f(m)$. We get then that $p \leq \sqrt{f(m)}$.

$$p^2 \leq f(m) < m^2 + m + 3m^2 < (2m + 1)^2$$

Hence, $p \leq 2m$.

Now, consider the product $\prod_{k = 0}^{m-1} \left [ f(m) - f(k) \right ]$. If we factor out $f(m) - f(k)$ as $(m - k)(m + k + 1)$, this gives :

$$\prod_{k = 0}^{m-1} \left [ f(m) - f(k) \right ] = \prod_{k = 0}^{m-1} \left [ (m - k)(m + k + 1) \right ] = (2m)!$$

As $p \leq 2m$, $p$ divides $(2m)!$, hence $p$ divides in turn on of the factors $(m - \mathcal{l})(m + \mathcal{l} + 1)$, implying $p \leq m + \mathcal{l} + 1$ for some $\mathcal{l} \leq m - 1$.

Also, as a consequence, $p$ divides $f(m) - f(\mathcal{l})$, and since $p$ also divides $f(m)$, p must divide $f(\mathcal{l})$. By the definition of $m$, $f(\mathcal{l})$ is prime, hence $ p = f(\mathcal{l}) $. This can equivalently be stated as $p - \mathcal{l} = \mathcal{l}^2 + n$.

Combined together with the inequality before, we have :

$$m + 1 \geq p - \mathcal{l} = \mathcal{l}^2 + n \geq n$$

Hence, the largest possible interval for which $f(x)$ is prime in general, is $ ( 0, n - 1) $. $\blacksquare$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 17 ·
Replies
17
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 16 ·
Replies
16
Views
3K