Is there a method for solving ODEs with functions H(x,y) and G(x,y)?

  • Thread starter Thread starter flyingpig
  • Start date Start date
  • Tags Tags
    Ode
flyingpig
Messages
2,574
Reaction score
1
Where n is a natural number, so we get polynomials of derivatives like

\left (\frac{\mathrm{d} y}{\mathrm{d} x} \right )^n + \left (\frac{\mathrm{d} y}{\mathrm{d} x} \right )^{n-1} + \left (\frac{\mathrm{d} y}{\mathrm{d} x} \right )^{n-3}... = 0

Has some ancient greek guy managed to give a name and techniques on how to solve this?

Do ODEs become nearly impossible if I throw in a g(x,y) or h(x,y) in there? That is

H(x,y)\left (\frac{\mathrm{d} y}{\mathrm{d} x} \right )^n + G(x,y)\left (\frac{\mathrm{d} y}{\mathrm{d} x} \right )^{n-1} + \left (\frac{\mathrm{d} y}{\mathrm{d} x} \right )^{n-3}... = 0

I imagine it would because we don't even have a "clean" formula for solving cubics.

Is there a method if it was quadratic?

How bad do the G(x,y) and H(x,y) messes things?
 
Mathematics news on Phys.org
Generally speaking, "ancient Greek guys" have given no names at all to things involving derivatives, because derivatives were not invented until around 1700. And as for more modern mathematicians, things tend to get named only if they are useful. I can see nothing useful about that formula.
 
I imagine it would because we don't even have a "clean" formula for solving cubics.

Yes we do. We have clean formulas for polynomials up to degree 4 (above which a "clean" formula is impossible).
 
Number Nine said:
Yes we do. We have clean formulas for polynomials up to degree 4 (above which a "clean" formula is impossible).

I've seen the formula, it's big and unuseful...

HallsofIvy said:
Generally speaking, "ancient Greek guys" have given no names at all to things involving derivatives, because derivatives were not invented until around 1700. And as for more modern mathematicians, things tend to get named only if they are useful. I can see nothing useful about that formula.

Well that's not right, I am sure there are ODEs that have that form.
 
flyingpig said:
Well that's not right, I am sure there are ODEs that have that form.

Of course there are, at least you have just invented it :p
Although that doesn't mean they are useful.

Actually, the first one - without functions H,G...- doen't really need any special care.
dy/dx are just numbers, so you need just to solve equation x^n + x^{n-1} + ... = 0 .
If there are some real solutions x=s, you just pick one and the solution to the ODE is the function dy/dx=s.

The one with functions H,G.. probably should have non-trivial solutions in some cases (on of the conditions is probably that H,G... have to be continuos), but again, solving it amounts to solving normal polynomial equation first and then solving equation of kind dy/dx=f(x,y), where f(x,y) is solution to the polynomial equation. (If I am not wrong:)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
2
Views
5K
Replies
1
Views
10K
Replies
4
Views
11K
Replies
4
Views
11K
Replies
3
Views
1K
Replies
1
Views
4K
Back
Top