redstone
- 26
- 0
I'm learning about the Christoffel symbol and playing around with it, so I'm curious... Does the math work below, or have I done something wrong?
\Gamma^{j}_{cd}=\Gamma^{j}_{cd}
g^{cd}\Gamma^{j}_{cd}=g^{cd}\Gamma^{j}_{cd}
\frac{1}{2}g^{cd}g^{jm}\left(g_{md,c}+g_{mc,d}-g_{cd,m}\right)=\frac{1}{2}g^{cd}g^{jm}\left(g_{md,c}+g_{mc,d}-g_{cd,m}\right)
\frac{1}{2}g^{cd}g^{jm}\left(g_{md,c}+g_{mc,d}-g_{cd,m}\right)=\frac{1}{2}g^{ab}g^{jm}\left(g_{mb,a}+g_{ma,b}-g_{ab,m}\right)
\frac{1}{2}g^{jm}\left(g_{md,c}+g_{mc,d}-g_{cd,m}\right)=\frac{1}{2}g_{cd}g^{ab}g^{jm}\left(g_{mb,a}+g_{ma,b}-g_{ab,m}\right)
\Gamma^{j}_{cd}=g_{cd}g^{ab}\Gamma^{j}_{ab}
\Gamma^{j}_{cd}=\Gamma^{j}_{cd}
g^{cd}\Gamma^{j}_{cd}=g^{cd}\Gamma^{j}_{cd}
\frac{1}{2}g^{cd}g^{jm}\left(g_{md,c}+g_{mc,d}-g_{cd,m}\right)=\frac{1}{2}g^{cd}g^{jm}\left(g_{md,c}+g_{mc,d}-g_{cd,m}\right)
\frac{1}{2}g^{cd}g^{jm}\left(g_{md,c}+g_{mc,d}-g_{cd,m}\right)=\frac{1}{2}g^{ab}g^{jm}\left(g_{mb,a}+g_{ma,b}-g_{ab,m}\right)
\frac{1}{2}g^{jm}\left(g_{md,c}+g_{mc,d}-g_{cd,m}\right)=\frac{1}{2}g_{cd}g^{ab}g^{jm}\left(g_{mb,a}+g_{ma,b}-g_{ab,m}\right)
\Gamma^{j}_{cd}=g_{cd}g^{ab}\Gamma^{j}_{ab}