Is This Considered a Linear Equation?

bballwaterboy
Messages
85
Reaction score
3
I know that linear equations have variables, which have a power no greater than one.

So, for example, 5x + 2 = 15 is linear, because the x is to the first power only.

But what about this equation:
x/x+2 = 80

This has an x in the denominator. Could we consider this linear still, because no x/variable is to a power greater than 1? Thanks!
 
Mathematics news on Phys.org
Is that supposed to be x/(x+2) = 80? Because what you wrote would be interpreted as

\frac{x}{x}+2=80 which is not a true statement.

If it's the former, then no, it's not linear.

y=\frac{x}{x+2} is what you'd call a rational function because it is comprised of a (linear) polynomial in the numerator and denominator.
 
As it is written, \frac{x}{x+ 2}= 80 it is not linear. But it can easily be converted to a linear equation:
x= 80(x+ 2)= 80x+ 160. Some texts call that an "equation of linear type" rather than a "linear equation".
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top