LagrangeEuler
- 711
- 22
If some function is element of space ##L^2(0,1)## then
\int^1_0|f(x)|^2dx< \infty. What in the case when it is not so simple to calculate this integral. For example ##f(x)=x^{-1}(C_1+C_2 \ln x)##. How to find is it this function in ##L^2(0,1)## for some ##C_1,C_2##?
\int^1_0|f(x)|^2dx< \infty. What in the case when it is not so simple to calculate this integral. For example ##f(x)=x^{-1}(C_1+C_2 \ln x)##. How to find is it this function in ##L^2(0,1)## for some ##C_1,C_2##?