Is this graph defined at x = 0?

  • Thread starter Thread starter PcumP_Ravenclaw
  • Start date Start date
  • Tags Tags
    Graph
PcumP_Ravenclaw
Messages
105
Reaction score
4
Hello everyone,
Is the graph ## (2^x - 1) / x ## defined at x = 0?
When I plot this graph there is no spike at 0 because 0/0 is undefined? Is the computer unable to show this? I am finding the limit as x approaches 0. From the graph limit exits but does f(0) exist?

Sehr Danke.
 
Mathematics news on Phys.org
PcumP_Ravenclaw said:
When I plot this graph there is no spike at 0 because 0/0 is undefined? Is the computer unable to show this?

The function f(x)=1/x is also undefined at x=0, but there's a spike in the graph of that function because the limit as x approaches 0 is infinity (or negative infinity if coming from the negative side of zero). There's no spike in (2x-1)/x because the limit as x approaches zero is not infinity.
 
I would say that it is not a question of the "graph" being defined but the function itself. f(x)= (2^x- 1)/x is "not defined" because "0/0" does not correspond to a number. There is what is usually called a "removable" discontinuity at x= 0. "Removable" because the limit, as x goes to 0, of f(x) exists- it is ln(2). The function "g(x)= (2^x- 1)/x if x is not 0, g(0)= ln(x)" is continuous for all x and is exactly the same as f for all x except 0.
 
Last edited by a moderator:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top