MHB Is this power series a convergent series?

chamilka
Messages
9
Reaction score
0
Hi everyone!
I have got this series in a part of my research. I need to check if this is a convergent series and if so, what is the radius of the convergence?

Here is the series..
\[\sum_{i=0}^{\infty}(-1)^{i}{b-1\choose i}B(y+ac+ci,\,n-y+1)\]

Sorry if my LateX code is not visible( I am currently learning LaTeX as said in the Forum rules), see the attached image below!

View attachment 225

Here, a,b and c are any three positive real numbers and y=0,1,2,...n

Thank you for your kind support!
 

Attachments

  • gif2.gi.gif
    gif2.gi.gif
    1.5 KB · Views: 127
Last edited by a moderator:
Physics news on Phys.org
Hi chamilka, just wrap the LaTeX code in [/ TEX] tags like so:<br /> <br /> sum_{i=0}^{\infty}(-1)^{i}{b-1\choose i}B(y+ac+ci,\,n-y+1)[ /TEX]&lt;br /&gt; &lt;br /&gt; (Just remove the space before the forward slash in the closing tex tag)
 
daigo said:
Hi chamilka, just wrap the LaTeX code in [/ TEX] tags like so:<br /> <br /> sum_{i=0}^{\infty}(-1)^{i}{b-1\choose i}B(y+ac+ci,\,n-y+1)[ /TEX]&lt;br /&gt; &lt;br /&gt; (Just remove the space before the forward slash in the closing tex tag)
&lt;br /&gt; &lt;br /&gt; Wrong!, on this site wrap the LaTeX with either \$ .. \$ or \$\$ .. \$\$ tags.&lt;br /&gt; &lt;br /&gt; CB
 
daigo said:
Hi chamilka, just wrap the LaTeX code in [/ TEX] tags like so:<br /> <br /> sum_{i=0}^{\infty}(-1)^{i}{b-1\choose i}B(y+ac+ci,\,n-y+1)[ /TEX]&lt;br /&gt; &lt;br /&gt; (Just remove the space before the forward slash in the closing tex tag)
&lt;br /&gt; and &lt;br /&gt; &lt;br /&gt; &lt;blockquote data-attributes=&quot;member: 703383&quot; data-quote=&quot;CaptainBlack&quot; data-source=&quot;post: 6668610&quot; class=&quot;bbCodeBlock bbCodeBlock--expandable bbCodeBlock--quote js-expandWatch&quot;&gt; &lt;div class=&quot;bbCodeBlock-title&quot;&gt; CaptainBlack said: &lt;/div&gt; &lt;div class=&quot;bbCodeBlock-content&quot;&gt; &lt;div class=&quot;bbCodeBlock-expandContent js-expandContent &quot;&gt; Wrong!, on this site wrap the LaTeX with either \$ .. \$ or \$\$ .. \$\$ tags.&lt;br /&gt; &lt;br /&gt; CB &lt;/div&gt; &lt;/div&gt; &lt;/blockquote&gt;&lt;br /&gt; Thank you daigo and CaptainBlack for your kind LateX teaching.. Special thanks to CaptainBlack who just edited my post..
 
CaptainBlack said:
Wrong!, on this site wrap the LaTeX with either \$ .. \$ or \$\$ .. \$\$ tags.

CB
I've never done this before, I always used the tags because I&#039;m so used to it...but then how do you write dollar signs?<br /> <br /> <blockquote data-attributes="" data-quote="" data-source="" class="bbCodeBlock bbCodeBlock--expandable bbCodeBlock--quote js-expandWatch"> <div class="bbCodeBlock-content"> <div class="bbCodeBlock-expandContent js-expandContent "> test i made $25 today and $30 yesterday test </div> </div> </blockquote>
 
daigo said:
I've never done this before, I always used the tags because I&#039;m so used to it...but then how do you write dollar signs?
<br /> <br /> You escape them thus: $\$5,600$. Use a backslash before the dollar sign <i>inside a math environment</i>.
 
daigo said:
I've never done this before, I always used the tags because I&#039;m so used to it...but then how do you write dollar signs?
<br /> <br /> You look at how I got the dollar signs to display in the text you quoted.<br /> <br /> CB
 
chamilka said:
Hi everyone!
I have got this series in a part of my research. I need to check if this is a convergent series and if so, what is the radius of the convergence?

Here is the series..
\[\sum_{i=0}^{\infty}(-1)^{i}{b-1\choose i}B(y+ac+ci,\,n-y+1)\]

Sorry if my LateX code is not visible( I am currently learning LaTeX as said in the Forum rules), see the attached image below!

View attachment 225

Here, a,b and c are any three positive real numbers and y=0,1,2,...n

Thank you for your kind support!

Hi chamilka, :)

Firstly I think you should review what a power series is. The given series is not a power series and the radius of convergence is defined only for power series.

\[\sum_{i=0}^{\infty}(-1)^{i}{b-1\choose i}B(y+ac+ci,\,n-y+1)\]

Using the method that we have used http://www.mathhelpboards.com/threads/1358-Chamilka-s-Question-from-Math-Help-Forum?p=6494#post6494, this series can be expressed as the following integral.

\begin{eqnarray}

\sum_{i=0}^{\infty}(-1)^{i}{b-1\choose i}B(y+ac+ci,\,n-y+1)&=&\int_{0}^{1}x^{y+ac-1}(1-x)^{n-y}(1-x^c)^{b-1}\,dx\\

&=&\int_{0}^{1}x^{y+ac-1}\left(\sum_{j=0}^{n-y}(-1)^{j}{n-y\choose j}x^{j}\right)(1-x^c)^{b-1}\,dx\\

&=&\sum_{j=0}^{n-y}\int_{0}^{1}x^{y+ac+j-1}(-1)^{j}{n-y\choose j}(1-x^c)^{b-1}\,dx\\

&=&\sum_{j=0}^{n-y}\int_{0}^{1}(-1)^{j}{n-y\choose j}(x^c)^{\left(\frac{y}{c}+a+\frac{j}{c}-\frac{1}{c}\right)}(1-x^c)^{b-1}\,dx\\

&=&\sum_{j=0}^{n-y}(-1)^{j}{n-y\choose j}\int_{0}^{1}(x^c)^{\left(\frac{y}{c}+a+\frac{j}{c}-\frac{1}{c}\right)}(1-x^c)^{b-1}\,dx\\

\end{eqnarray}

Let, \(\displaystyle x=z^{\frac{1}{c}}\Rightarrow dx=\frac{1}{c}z^{\frac{1}{c}-1}\,dz\)

\begin{eqnarray}

\therefore\sum_{i=0}^{\infty}(-1)^{i}{b-1\choose i}B(y+ac+ci,\,n-y+1)&=&\sum_{j=0}^{n-y}(-1)^{j}{n-y\choose j}\int_{0}^{1}z^{\left(\frac{y}{c}+a+\frac{j}{c}-\frac{1}{c}\right)}(1-z)^{b-1}\frac{1}{c}z^{\frac{1}{c}-1}\,dz\\

&=&\frac{1}{c}\sum_{j=0}^{n-y}(-1)^{j}{n-y\choose j}\int_{0}^{1}z^{\left(\frac{y}{c}+a+\frac{j}{c}-1\right)}(1-z)^{b-1}\,dz\\

&=&\frac{1}{c}\sum_{j=0}^{n-y}(-1)^{j}{n-y\choose j}B\left(\frac{y}{c}+a+\frac{j}{c},\,b\right)

\end{eqnarray}

\(\sum_{j=0}^{n-y}(-1)^{j}{n-y\choose j}B\left(\frac{y}{c}+a+\frac{j}{c},\,b\right)\) is a finite series since, \(n-y\in\mathbb{Z}^{+}\cup\{0\}\)

Therefore, \(\sum_{i=0}^{\infty}(-1)^{i}{b-1\choose i}B(y+ac+ci,\,n-y+1)\) can be written as a finite series and hence it is convergent.

Kind Regards,
Sudharaka.
 
Sudharaka said:
Hi chamilka, :)

Firstly I think you should review what a power series is. The given series is not a power series and the radius of convergence is defined only for power series.
.......
\(\sum_{j=0}^{n-y}(-1)^{j}{n-y\choose j}B\left(\frac{y}{c}+a+\frac{j}{c},\,b\right)\) is a finite series since, \(n-y\in\mathbb{Z}^{+}\cup\{0\}\)

Therefore, \(\sum_{i=0}^{\infty}(-1)^{i}{b-1\choose i}B(y+ac+ci,\,n-y+1)\) can be written as a finite series and hence it is convergent.

Kind Regards,
Sudharaka.

Thank you very much Sudharaka. I got some idea about the power series and radius of convergence from the wiki articles and from the way you explained that my infinite series is in deed a finite series I got answer to my question without troubling more about PS and RoC.
I honestly express my gratitude.. (Handshake)
 

Similar threads

Back
Top