Is this the correct answer? Thanks...

  • Thread starter Thread starter ladyrae
  • Start date Start date
  • Tags Tags
    Limit
ladyrae
Messages
32
Reaction score
0
Thanks...

Evaluate the limit

lim x->-1 (2x^2-x-3)/(x+1)

I simplified to (2x^2-3)/(2x+1) = -1/-1 = 1

Is this correct?
 
Physics news on Phys.org
I believe you want to factor the top, cancel out the hole in the graph, and then evaluate by substitution.

\lim_{x\rightarrow -1} \frac {2x^2-x-3}{x+1}

= \lim_{x\rightarrow -1} \frac {(2x-3)(x+1)}{x+1}

= \lim_{x\rightarrow -1} 2x-3

= -5.
 
You can use L'Hospital's rule:

\lim_{x\rightarrow -1} \frac {2x^2-x-3}{x+1}

If you plug in, you get 0/0, so:

\lim_{x\rightarrow -1} \frac {2x^2-x-3}{x+1}
= \lim_{x\rightarrow -1} \frac {4x-1}{1}

Plug in and you get -5.
 

Similar threads

Replies
6
Views
2K
Replies
12
Views
1K
Replies
3
Views
1K
Replies
2
Views
1K
Replies
3
Views
2K
Replies
8
Views
2K
Replies
2
Views
861
Back
Top