MHB Ismahan's question at Yahoo Answers regarding concavity

  • Thread starter Thread starter MarkFL
  • Start date Start date
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Calculus Homework Please Help!?

Let f(x)= 1/(7x^2+8). Find the open intervals on which f is concave up (down). Then determine the x-coordinates of all inflection points of f.

1. F is concave up on the intervals ______________
2. F is concave down on the intervals ________________
3. The inflection points occur at x= ____________

Notes: In the first two, your answer should either be a single interval, such as (0,1), a comma separated list of intervals, such as (-inf, 2), (3,4), or the word "none".
In the last one, your answer should be a comma separated list of x values or the word "none".

Here is a link to the question:

Calculus Homework Please Help!? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello ismahan,

We are given the function:

$\displaystyle f(x)=\frac{1}{7x^2+8}=(7x^2+8)^{-1}$

We need to find the second derivative to answer questions concerning concavity. Using the power and chain rules, we find:

$\displaystyle f'(x)=(-1)(7x^2+8)^{-2}(14x)=-14x(7x^2+8)^{-2}$

Differentiate again, using the product, power and chain rules:

$\displaystyle f''(x)=(-14x)(-2(7x^2+8)^{-3}(14x))+(-14)(7x^2+8)^{-2}=\frac{14(21x^2-8)}{(7x^2+8)^3}$

Now, we observe that the denominator has no real roots, so our only critical values come from the numerator. Equating the factor containing $x$ to zero will find for us the values of $x$ at which the sign of the second derivative may change:

$\displaystyle 21x^2-8=0$

$\displaystyle x^2=\frac{8}{21}$

$\displaystyle x=\pm\frac{2\sqrt{2}}{\sqrt{21}}$

We have two critical values, so we will have 3 intervals that result when dividing the $x$-axis at these two values. Since the roots are of odd multiplcity, we know the sign of the second derivative will alternate across these intervals, so we need only check one interval, and for simplicity, I suggest checking the middle interval with the test value $x=0$. In doing so, we can easily see the sign of the second derivative is negative in this middle interval.

1.) Hence, the given function is concave up on the intervals:

$\displaystyle \left(-\infty,-\frac{2\sqrt{2}}{\sqrt{21}} \right),\,\left(\frac{2\sqrt{2}}{\sqrt{21}},\infty \right)$

2.) The function is concave down on the interval:

$\displaystyle \left(-\frac{2\sqrt{2}}{\sqrt{21}},\frac{2\sqrt{2}}{\sqrt{21}} \right)$

3.) The function has inflection points for:

$\displaystyle x=-\frac{2\sqrt{2}}{\sqrt{21}},\,\frac{2\sqrt{2}}{ \sqrt{21}}$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top