Isomorphism beetwenn vector space and sub space

Herbststurm
Messages
30
Reaction score
0
Hi,

I have to find a vector space V with a real sub space U and a bijective linear map.

Here my Ideas and my questions:

If the linear map is bijective, than dim V = dim U

Because U is a real sub space the only way to valid this constraint is if the dimension is infinity. I wrote:

U \subseteq V ~ f: U \rightarrow V bijective

dim ~ U = dim ~ V = \infty

U = x_{1}e_{1} + x_{2}e_{2} + x_{i}e_{n} = \sum\limits_{i,n=1}^{\infty} x_{i}e_{n} \ x_{i} \in k, ~ e_{n} \in U, ~ i,n \in \mathbb{N}

V = x_{1}e_{1} + x_{2}e_{2} + x_{j}e_{m} = \sum\limits_{j,m=1}^{\infty} x_{j}e_{m} \ x_{j} \in k, ~ e_{m} \in U, ~ j,m \in \mathbb{N}

\sum\limits_{i,n=1}^{\infty} x_{i}e_{n} = \sum\limits_{j,m=1}^{\infty} x_{j}e_{m} ~ \Leftrightarrow ~ f: U \ \rightarrow V ~ isomorphism

1.) Are my minds up to now correct?

2.) How to go on? Maybe a complete induction? But I have different indices.

Thank you
all the best
 
Physics news on Phys.org
I'm assuming you're looking for a proper subspace U, then? (V is a subspace of itself, and there's an obvious isomorphism from V onto V!)

Your idea of going to infinite dimensions is of course correct. But I don't quite understand what you're doing after that. What is your choice of V? Of U? Of f?
 
since linear maps of vector spaces are equivalent to functions on their bases, and every set is a basis of some vector space, it suffices to find an injection from a set to itself which is not surjective.
 
Hi,

thanks for help. Maybe it is a good idea if I quote the exercise:

Find a vector space V and a real sub vector space U in V such that a linear map f from U to V is isomorph. Specify the isomorphism and proof you statement.

That are all informations in the exercise.

greetings
 
Technically, the exercise doesn't say that U is a proper subspace of V, so you could use the identity map as your isomorphism. But that's probably not what they're asking for ;)

What's the simplest infinite vector space you can think of? For example, let V be the space of all sequences of real numbers, and look at any infinite-dimensional subspace. (Unfortunately in this case V has no basis (it has no spanning set) so you have to define the isomorphism explicitly, but if you pick your subspace properly then it will still be easy. Alternatively, let V be the space of all real sequences with finitely many nonzero terms; this space has a basis.)
 
Last edited:
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top