Issue with Fourier Series of an even function.

darkfeffy
Messages
17
Reaction score
0
Hi,
I wish to obtain the Fourier series of the signal in red (please see attached figure fig1_sine_plots.png). Basically, it is a full-wave rectified 3f sinusoid, where f = 50Hz. The blue signal represents a sinusoid with frequency f = 50Hz.
In the following equations (please see attached figure fig2_equations.png), “T” represents the period of the signal in blue and w0 is the angular frequency of the signal in blue.

One can only arrive at the correct representation of the a.c. (alternating current) part of the signal if the values of n are even and multiples of 3 (i.e. n = 6, 12, 18, etc.). Well, to be technically accurate, it suffices for n to be a multiple of 3, because the odd multiples will each have an amplitude of 0.

So, I have a problem at this point. I have most probably forgotten some of the theory behind the Fourier Series, but can someone explain why the values of n need to multiples of 3? According to the equations above (please see attachment fig2_equations), there is no restriction as to the different positive values that n can have. Why can’t n = 4? Or n = 5? Or n = 8? Also, why can’t n be less than 3?

Thanks in advance.
 

Attachments

  • fig1_sine_plots.png
    fig1_sine_plots.png
    5 KB · Views: 534
  • fig2_equations.png
    fig2_equations.png
    9.4 KB · Views: 515
Mathematics news on Phys.org
I'm no expert myself but, off the top of my head, I would guess it has something to do with the fact that you are dealing with a "full-wave rectified 3f sinusoid". What does the "3" in "3f" mean?
 
Explanation of '3f'

By '3f', I mean '3 multiplied by f'. In other words 150Hz. If a 150Hz sinusoidal signal is rectified (i.e. absolute value of sin(3wt)), then it will look like the red signal in my first attachment. Sorry for this confusion.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top