MarkFL said:
Here is the question:
I have posted a link there to this topic so the OP can see my work.
Here's how I would do the problem:
[math]\displaystyle \begin{align*} \int{ \left[ x^3 + 2x + \sin{(x)} \right] e^{3x}\,dx} = \int{ \left( x^3 + 2x \right) e^{3x} \,dx} + \int{ \sin{(x)}e^{3x}\,dx} \end{align*}[/math]
So now we can evaluate each integral by using Integration by Parts.
\displaystyle \begin{align*} \int{ \left( x^3 + 2x \right) e^{3x}\,dx} &= \frac{1}{3} \left( x^3 + 2x \right) e^{3x} - \int{ \frac{1}{3} \left( 3x^2 + 2 \right) e^{3x}\,dx } \\ &= \frac{1}{3} \left( x^3 + 2x \right) e^{3x} - \frac{1}{3} \left[ \frac{1}{3} \left( 3x^2 + 2 \right) e^{3x} - \int{ \frac{1}{3} \left( 6x \right) e^{3x} \,dx } \right] \\ &= \frac{1}{3} \left( x^3 + 2x \right) e^{3x} - \frac{1}{9} \left( 3x^2 + 2 \right) e^{3x} + \frac{2}{3} \int{ x\,e^{3x}\,dx} \\ &= \frac{1}{3} \left( x^3 + 2x \right) e^{3x} - \frac{1}{9} \left( 3x^2 + 2 \right) e^{3x} + \frac{ 2}{3} \left[ \frac{1}{3} x\,e^{3x} - \int{ \frac{1}{3} e^{3x}\,dx } \right] \\ &= \frac{1}{3} \left( x^3 + 2x \right) e^{3x} - \frac{1}{9} \left( 3x^2 + 2 \right) e^{3x} + \frac{2}{9}x\,e^{3x} - \frac{2}{9} \int{ e^{3x}\,dx} \\ &= \frac{1}{3} \left( x^3 + 2x \right) e^{3x} - \frac{1}{9} \left( 3x^2 + 2 \right) e^{3x} + \frac{2}{9}x\,e^{3x} - \frac{2}{27}e^{3x} \end{align*}
and
\displaystyle \begin{align*} I &= \int{\sin{(x)}e^{3x}\,dx} \\ I &= \frac{1}{3}\sin{(x)}e^{3x} - \int{ \frac{1}{3}\cos{(x)}e^{3x}\,dx } \\ I &= \frac{1}{3}\sin{(x)}e^{3x} - \frac{1}{3} \int{ \cos{(x)}e^{3x}\,dx} \\ I &= \frac{1}{3}\sin{(x)}e^{3x} - \frac{1}{3} \left[ \frac{1}{3}\cos{(x)}e^{3x} - \int{ -\frac{1}{3}\sin{(x)}e^{3x}\,dx } \right] \\ I &= \frac{1}{3}\sin{(x)}e^{3x} - \frac{1}{9}\cos{(x)}e^{3x} - \frac{1}{9}\int{\sin{(x)}e^{3x}\,dx} \\ I &= \frac{1}{3}\sin{(x)}e^{3x} - \frac{1}{9}\cos{(x)}e^{3x} - \frac{1}{9} I \\ \frac{10}{9}I &= \frac{1}{3}\sin{(x)}e^{3x} - \frac{1}{9}\cos{(x)}e^{3x} \\ I &= \frac{9}{10} \left[ \frac{1}{3}\sin{(x)}e^{3x} - \frac{1}{9}\cos{(x)}e^{3x} \right] \\ I &= \frac{3}{10}\sin{(x)}e^{3x} - \frac{1}{10}\cos{(x)}e^{3x} \end{align*}
Therefore \displaystyle \begin{align*} \int{ \left[ x^3 + 2x + \sin{(x)} \right] e^{3x}\,dx}\end{align*}
\displaystyle \begin{align*} = \frac{1}{3} \left( x^3 + 2x \right) e^{3x} - \frac{1}{9} \left( 3x^2 + 2 \right) e^{3x} + \frac{2}{9}x\,e^{3x} - \frac{2}{27}e^{3x} + \frac{3}{10}\sin{(x)}e^{3x} - \frac{1}{10}\cos{(x)}e^{3x} + C \end{align*}