JoHn eDwArd's question at Yahoo Answers regarding an indefinite integral

Click For Summary

Discussion Overview

The discussion revolves around the evaluation of the indefinite integral of the expression (x^3 + 2x + sin x) e^(3x) dx. Participants explore various methods to solve the integral, including integration by parts and treating it as an ordinary differential equation (ODE).

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant presents a solution using the method of undetermined coefficients, deriving a particular solution for the integral.
  • Another participant proposes breaking the integral into two parts, applying integration by parts to each component separately.
  • A third participant acknowledges the use of integration by parts but opts for an ODE approach, expressing a sense of "laziness" in their method.
  • Some participants express appreciation for the clarity and presentation of the solutions provided by others.
  • There is a light-hearted acknowledgment of the different approaches taken by participants, with some referring to their methods as "lazy" compared to the expected approach.

Areas of Agreement / Disagreement

Participants do not reach a consensus on a single method for solving the integral, as multiple approaches are discussed and appreciated. There is recognition of different techniques, but no agreement on which is superior or more appropriate.

Contextual Notes

Participants' solutions depend on various assumptions about the methods used, and there are unresolved steps in the integration process that may affect the final results.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

How to get the integral of (x^3 + 2x + sin x) e^(3x) dx?

please include the complete solution. thanks

I have posted a link there to this topic so the OP can see my work.
 
Physics news on Phys.org
Hello joHn eDwArd,

We are given to evaluate:

$$\int\left(x^3+2x+\sin(x) \right)e^{3x}\,dx$$

I would write:

$$y=\int\left(x^3+2x+\sin(x) \right)e^{3x}\,dx$$

Now, differentiating with respect to $x$, we obtain the ODE:

$$\frac{dy}{dx}=\left(x^3+2x+\sin(x) \right)e^{3x}$$

We see the homogeneous solution is:

$$y_h(x)=c_1$$

and, using the method of undetermined coefficients, we should expect a particular solution of the form:

$$y_p(x)=\left(Ax^3+Bx^2+Cx+D+E\cos(x)+F\sin(x) \right)e^{3x}$$

Differentiating with respect to $x$ and substituting into the ODE, we obtain after dividing though by $e^{3x}$:

$$3Ax^3+(3A+3B)x^2+(2B+3C)x+(C+3D)+(3F-E)\sin(x)+(3E+F)\cos(x)=x^3+2x+\sin(x)$$

Equating coefficients, we find:

$$3A=1\,\therefore\,A=\frac{1}{3}$$

$$3A+3B=0\,\therefore\,B=-A=-\frac{1}{3}$$

$$2B+3C=2\,\therefore\,C=\frac{8}{9}$$

$$C+3D=0\,\therefore\,D=-\frac{C}{3}=-\frac{8}{27}$$

$$3F-E=1$$

$$3E+F=0\,\therefore\,E=-\frac{1}{10},\,F=\frac{3}{10}$$

And so we have:

$$y_p(x)=\left(\frac{1}{3}x^3-\frac{1}{3}x^2+\frac{8}{9}x-\frac{8}{27}-\frac{1}{10}\cos(x)+\frac{3}{10}\sin(x) \right)e^{3x}$$

$$y_p(x)=\frac{e^{3x}}{270}\left(90x^3-90x^2+240x-80-27\cos(x)+81\sin(x) \right)$$

And so by superposition, we have:

$$y(x)=y_h(x)+y_p(x)$$

Hence, we may conclude:

$$\int\left(x^3+2x+\sin(x) \right)e^{3x}\,dx=\frac{e^{3x}}{270}\left(90x^3-90x^2+240x-80-27\cos(x)+81\sin(x) \right)+C$$
 
MarkFL said:
Here is the question:
I have posted a link there to this topic so the OP can see my work.

Here's how I would do the problem:

[math]\displaystyle \begin{align*} \int{ \left[ x^3 + 2x + \sin{(x)} \right] e^{3x}\,dx} = \int{ \left( x^3 + 2x \right) e^{3x} \,dx} + \int{ \sin{(x)}e^{3x}\,dx} \end{align*}[/math]

So now we can evaluate each integral by using Integration by Parts.

\displaystyle \begin{align*} \int{ \left( x^3 + 2x \right) e^{3x}\,dx} &= \frac{1}{3} \left( x^3 + 2x \right) e^{3x} - \int{ \frac{1}{3} \left( 3x^2 + 2 \right) e^{3x}\,dx } \\ &= \frac{1}{3} \left( x^3 + 2x \right) e^{3x} - \frac{1}{3} \left[ \frac{1}{3} \left( 3x^2 + 2 \right) e^{3x} - \int{ \frac{1}{3} \left( 6x \right) e^{3x} \,dx } \right] \\ &= \frac{1}{3} \left( x^3 + 2x \right) e^{3x} - \frac{1}{9} \left( 3x^2 + 2 \right) e^{3x} + \frac{2}{3} \int{ x\,e^{3x}\,dx} \\ &= \frac{1}{3} \left( x^3 + 2x \right) e^{3x} - \frac{1}{9} \left( 3x^2 + 2 \right) e^{3x} + \frac{ 2}{3} \left[ \frac{1}{3} x\,e^{3x} - \int{ \frac{1}{3} e^{3x}\,dx } \right] \\ &= \frac{1}{3} \left( x^3 + 2x \right) e^{3x} - \frac{1}{9} \left( 3x^2 + 2 \right) e^{3x} + \frac{2}{9}x\,e^{3x} - \frac{2}{9} \int{ e^{3x}\,dx} \\ &= \frac{1}{3} \left( x^3 + 2x \right) e^{3x} - \frac{1}{9} \left( 3x^2 + 2 \right) e^{3x} + \frac{2}{9}x\,e^{3x} - \frac{2}{27}e^{3x} \end{align*}

and

\displaystyle \begin{align*} I &= \int{\sin{(x)}e^{3x}\,dx} \\ I &= \frac{1}{3}\sin{(x)}e^{3x} - \int{ \frac{1}{3}\cos{(x)}e^{3x}\,dx } \\ I &= \frac{1}{3}\sin{(x)}e^{3x} - \frac{1}{3} \int{ \cos{(x)}e^{3x}\,dx} \\ I &= \frac{1}{3}\sin{(x)}e^{3x} - \frac{1}{3} \left[ \frac{1}{3}\cos{(x)}e^{3x} - \int{ -\frac{1}{3}\sin{(x)}e^{3x}\,dx } \right] \\ I &= \frac{1}{3}\sin{(x)}e^{3x} - \frac{1}{9}\cos{(x)}e^{3x} - \frac{1}{9}\int{\sin{(x)}e^{3x}\,dx} \\ I &= \frac{1}{3}\sin{(x)}e^{3x} - \frac{1}{9}\cos{(x)}e^{3x} - \frac{1}{9} I \\ \frac{10}{9}I &= \frac{1}{3}\sin{(x)}e^{3x} - \frac{1}{9}\cos{(x)}e^{3x} \\ I &= \frac{9}{10} \left[ \frac{1}{3}\sin{(x)}e^{3x} - \frac{1}{9}\cos{(x)}e^{3x} \right] \\ I &= \frac{3}{10}\sin{(x)}e^{3x} - \frac{1}{10}\cos{(x)}e^{3x} \end{align*}

Therefore \displaystyle \begin{align*} \int{ \left[ x^3 + 2x + \sin{(x)} \right] e^{3x}\,dx}\end{align*}

\displaystyle \begin{align*} = \frac{1}{3} \left( x^3 + 2x \right) e^{3x} - \frac{1}{9} \left( 3x^2 + 2 \right) e^{3x} + \frac{2}{9}x\,e^{3x} - \frac{2}{27}e^{3x} + \frac{3}{10}\sin{(x)}e^{3x} - \frac{1}{10}\cos{(x)}e^{3x} + C \end{align*}
 
Prove It said:
Here's how I would do the problem:...

I truly appreciate you taking the time to present this so nicely! The OP is probably expected to use IBP here, but I got "lazy" and decided to treat it as an ODE instead. (Wasntme)
 
MarkFL said:
I truly appreciate you taking the time to present this so nicely! The OP is probably expected to use IBP here, but I got "lazy" and decided to treat it as an ODE instead. (Wasntme)

Don't worry Mark, your solution is quite beautiful, and you weren't the only lazy one. I could not be arsed taking out common factors and collecting like terms (if there are any) hahaha.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
35K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
2
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K