JoHn eDwArd's question at Yahoo Answers regarding an indefinite integral

Click For Summary
SUMMARY

The integral of the function (x^3 + 2x + sin x) e^(3x) dx can be evaluated using both the method of undetermined coefficients and integration by parts (IBP). The complete solution is given by the expression: ∫(x^3 + 2x + sin(x)) e^(3x) dx = (1/3)(x^3 + 2x)e^(3x) - (1/9)(3x^2 + 2)e^(3x) + (2/9)xe^(3x) - (2/27)e^(3x) + (3/10)sin(x)e^(3x) - (1/10)cos(x)e^(3x) + C. The discussion highlights the use of both approaches, with participants appreciating the clarity of the presented solutions.

PREREQUISITES
  • Understanding of indefinite integrals
  • Familiarity with integration techniques, specifically integration by parts (IBP)
  • Knowledge of ordinary differential equations (ODEs)
  • Basic trigonometric functions and their integrals
NEXT STEPS
  • Study the method of undetermined coefficients in detail
  • Practice integration by parts with various functions
  • Explore the application of ordinary differential equations in solving integrals
  • Review the properties and integrals of exponential functions
USEFUL FOR

Students and educators in calculus, mathematicians working with integrals, and anyone seeking to deepen their understanding of integration techniques and differential equations.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

How to get the integral of (x^3 + 2x + sin x) e^(3x) dx?

please include the complete solution. thanks

I have posted a link there to this topic so the OP can see my work.
 
Physics news on Phys.org
Hello joHn eDwArd,

We are given to evaluate:

$$\int\left(x^3+2x+\sin(x) \right)e^{3x}\,dx$$

I would write:

$$y=\int\left(x^3+2x+\sin(x) \right)e^{3x}\,dx$$

Now, differentiating with respect to $x$, we obtain the ODE:

$$\frac{dy}{dx}=\left(x^3+2x+\sin(x) \right)e^{3x}$$

We see the homogeneous solution is:

$$y_h(x)=c_1$$

and, using the method of undetermined coefficients, we should expect a particular solution of the form:

$$y_p(x)=\left(Ax^3+Bx^2+Cx+D+E\cos(x)+F\sin(x) \right)e^{3x}$$

Differentiating with respect to $x$ and substituting into the ODE, we obtain after dividing though by $e^{3x}$:

$$3Ax^3+(3A+3B)x^2+(2B+3C)x+(C+3D)+(3F-E)\sin(x)+(3E+F)\cos(x)=x^3+2x+\sin(x)$$

Equating coefficients, we find:

$$3A=1\,\therefore\,A=\frac{1}{3}$$

$$3A+3B=0\,\therefore\,B=-A=-\frac{1}{3}$$

$$2B+3C=2\,\therefore\,C=\frac{8}{9}$$

$$C+3D=0\,\therefore\,D=-\frac{C}{3}=-\frac{8}{27}$$

$$3F-E=1$$

$$3E+F=0\,\therefore\,E=-\frac{1}{10},\,F=\frac{3}{10}$$

And so we have:

$$y_p(x)=\left(\frac{1}{3}x^3-\frac{1}{3}x^2+\frac{8}{9}x-\frac{8}{27}-\frac{1}{10}\cos(x)+\frac{3}{10}\sin(x) \right)e^{3x}$$

$$y_p(x)=\frac{e^{3x}}{270}\left(90x^3-90x^2+240x-80-27\cos(x)+81\sin(x) \right)$$

And so by superposition, we have:

$$y(x)=y_h(x)+y_p(x)$$

Hence, we may conclude:

$$\int\left(x^3+2x+\sin(x) \right)e^{3x}\,dx=\frac{e^{3x}}{270}\left(90x^3-90x^2+240x-80-27\cos(x)+81\sin(x) \right)+C$$
 
MarkFL said:
Here is the question:
I have posted a link there to this topic so the OP can see my work.

Here's how I would do the problem:

[math]\displaystyle \begin{align*} \int{ \left[ x^3 + 2x + \sin{(x)} \right] e^{3x}\,dx} = \int{ \left( x^3 + 2x \right) e^{3x} \,dx} + \int{ \sin{(x)}e^{3x}\,dx} \end{align*}[/math]

So now we can evaluate each integral by using Integration by Parts.

\displaystyle \begin{align*} \int{ \left( x^3 + 2x \right) e^{3x}\,dx} &= \frac{1}{3} \left( x^3 + 2x \right) e^{3x} - \int{ \frac{1}{3} \left( 3x^2 + 2 \right) e^{3x}\,dx } \\ &= \frac{1}{3} \left( x^3 + 2x \right) e^{3x} - \frac{1}{3} \left[ \frac{1}{3} \left( 3x^2 + 2 \right) e^{3x} - \int{ \frac{1}{3} \left( 6x \right) e^{3x} \,dx } \right] \\ &= \frac{1}{3} \left( x^3 + 2x \right) e^{3x} - \frac{1}{9} \left( 3x^2 + 2 \right) e^{3x} + \frac{2}{3} \int{ x\,e^{3x}\,dx} \\ &= \frac{1}{3} \left( x^3 + 2x \right) e^{3x} - \frac{1}{9} \left( 3x^2 + 2 \right) e^{3x} + \frac{ 2}{3} \left[ \frac{1}{3} x\,e^{3x} - \int{ \frac{1}{3} e^{3x}\,dx } \right] \\ &= \frac{1}{3} \left( x^3 + 2x \right) e^{3x} - \frac{1}{9} \left( 3x^2 + 2 \right) e^{3x} + \frac{2}{9}x\,e^{3x} - \frac{2}{9} \int{ e^{3x}\,dx} \\ &= \frac{1}{3} \left( x^3 + 2x \right) e^{3x} - \frac{1}{9} \left( 3x^2 + 2 \right) e^{3x} + \frac{2}{9}x\,e^{3x} - \frac{2}{27}e^{3x} \end{align*}

and

\displaystyle \begin{align*} I &= \int{\sin{(x)}e^{3x}\,dx} \\ I &= \frac{1}{3}\sin{(x)}e^{3x} - \int{ \frac{1}{3}\cos{(x)}e^{3x}\,dx } \\ I &= \frac{1}{3}\sin{(x)}e^{3x} - \frac{1}{3} \int{ \cos{(x)}e^{3x}\,dx} \\ I &= \frac{1}{3}\sin{(x)}e^{3x} - \frac{1}{3} \left[ \frac{1}{3}\cos{(x)}e^{3x} - \int{ -\frac{1}{3}\sin{(x)}e^{3x}\,dx } \right] \\ I &= \frac{1}{3}\sin{(x)}e^{3x} - \frac{1}{9}\cos{(x)}e^{3x} - \frac{1}{9}\int{\sin{(x)}e^{3x}\,dx} \\ I &= \frac{1}{3}\sin{(x)}e^{3x} - \frac{1}{9}\cos{(x)}e^{3x} - \frac{1}{9} I \\ \frac{10}{9}I &= \frac{1}{3}\sin{(x)}e^{3x} - \frac{1}{9}\cos{(x)}e^{3x} \\ I &= \frac{9}{10} \left[ \frac{1}{3}\sin{(x)}e^{3x} - \frac{1}{9}\cos{(x)}e^{3x} \right] \\ I &= \frac{3}{10}\sin{(x)}e^{3x} - \frac{1}{10}\cos{(x)}e^{3x} \end{align*}

Therefore \displaystyle \begin{align*} \int{ \left[ x^3 + 2x + \sin{(x)} \right] e^{3x}\,dx}\end{align*}

\displaystyle \begin{align*} = \frac{1}{3} \left( x^3 + 2x \right) e^{3x} - \frac{1}{9} \left( 3x^2 + 2 \right) e^{3x} + \frac{2}{9}x\,e^{3x} - \frac{2}{27}e^{3x} + \frac{3}{10}\sin{(x)}e^{3x} - \frac{1}{10}\cos{(x)}e^{3x} + C \end{align*}
 
Prove It said:
Here's how I would do the problem:...

I truly appreciate you taking the time to present this so nicely! The OP is probably expected to use IBP here, but I got "lazy" and decided to treat it as an ODE instead. (Wasntme)
 
MarkFL said:
I truly appreciate you taking the time to present this so nicely! The OP is probably expected to use IBP here, but I got "lazy" and decided to treat it as an ODE instead. (Wasntme)

Don't worry Mark, your solution is quite beautiful, and you weren't the only lazy one. I could not be arsed taking out common factors and collecting like terms (if there are any) hahaha.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K