MHB JOHN's question at Yahoo Answers involving Lagrange multipliers

AI Thread Summary
The discussion centers on maximizing the cross-sectional area of a rectangular beam cut from an elliptical log with semiaxes of 2 feet and 1 foot using Lagrange multipliers. The objective function for the area is defined as A(x,y) = 4xy, subject to the constraint g(x,y) = x^2 + 4y^2 - 4 = 0. By applying Lagrange multipliers, the equations lead to the relationship x^2 = 4y^2, which is then substituted back into the constraint to find y^2 = 1/2. Ultimately, this results in a maximum area of 4 ft² for the rectangular cross-section of the beam. This method demonstrates the application of optimization techniques in calculus.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Calc 3 Lagrange multiplier question?

What is the maximal cross-sectional area of a rectangular beam cut from an elliptical log with semiaxis of length 2 feet and 1 foot?

I need help on applying the method of lagrange to this scenario. Thank you

Here is a link to the question:

Calc 3 Lagrange multiplier question? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello JOHN,

I would choose to orient my coordinate axes such that the origin coincides with the center of the elliptical cross-section of the log, where all linear measures are in ft. Now looking only at the first quadrant, let's let the upper right vertex of the cross section of the rectangular beam be at $(x,y)$. Hence, adding the other 3 quadrants, we find the area of this rectangular cross-section, i.e., our objective function is:

$$A(x,y)=4xy$$

subject to the constraint:

$$g(x,y)=x^2+4y^2-4=0$$

Using Lagrange multipliers, we obtain the system:

$$4y=\lambda(2x)$$

$$4x=\lambda(8y)$$

Solving both for $\lambda$, and equating, we find:

$$\lambda=\frac{4y}{2x}=\frac{4x}{8y}$$

Simplifying, we find:

$$x^2=4y^2$$

Substituting this into the constraint, we find:

$$4y^2+4y^2=4$$

Solving for $y^2$, we find:

$$y^2=\frac{1}{2}$$

and since:

$$x=2y$$, as we have taken the positive root given the two variables are in the first quadrant, we find:

$$A_{\text{max}}=A(2y,y)=8y^2=8\cdot\frac{1}{2}=4$$

Hence, the maximal area of the rectangular cross-section of the beam is $4\text{ ft}^2$.

To JOHN and any other guest viewing this topic, I invite and encourage you to post other optimization with constraint problems in our http://www.mathhelpboards.com/f10/ forum.

Best Regards,

Mark.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top