MHB Joko123's question at Yahoo Answers (Sketching a cone)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Cone
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

Consider the Surface: r = ucos(v)i + usin(v)j + (h*u/r)k 0<u<r and 0<v<2*pi

(should be less then equal to for constraints)

Show that this represents the curved surface of a circular cone height h and base radius r. Sketch this cone?I have tried multiple times to solve this and can't seem to grasp a solution. PLEASE HELP

Here is a link to the question:

Please Help, How to Sketch a circular cone, height h and base r? - Yahoo!7 Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Joko123,

Consider the surface: $$S:\left \{ \begin{matrix}x=u\cos v\\y=u\sin v\\z=\dfrac{h}{r}u\end{matrix}\right. \qquad (u\in\mathbb{R},\;v\in\mathbb{R})$$ We have $x^2+y^2=u^2\cos^2v+u^2\sin^2v=u^2(\cos^2v+\sin^2v)=u^2$ and $u=rz/h$, so: $$S:z^2=\frac{h^2}{r^2}(x^2+y^2)$$ and we know that a equation of this form is the equation of an unbounded conical surface. Now, consider the contraints $0\leq u\leq r,\;0\leq v\leq 2\pi$. For $u\in [0,r]$ we have $$\left \{ \begin{matrix}x=u\cos v\\y=u\sin v\\z=\dfrac{h}{r}u\end{matrix}\right. \qquad (v\in [0,2\pi])$$ that is, a circle on the plane $z=hu/r$.

If $u=0$, we get the point $(0,0,0)$ (circle with radius $0$).

If $u=r$, we get $$\left \{ \begin{matrix}x=r\cos v\\y=r\sin v\\z=h\end{matrix}\right. \qquad (v\in [0,2\pi])$$ that is, a circle on the plane $z=h$ with center at $(0,0,h)$ and radius $r$. Now, is easy to sketch the cone (choose only the part above):

 

Attachments

  • DoubleCone.png
    DoubleCone.png
    7.4 KB · Views: 88
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top