Jordan Form of Matrix: Find Solution

  • Thread starter Thread starter talolard
  • Start date Start date
  • Tags Tags
    Form
talolard
Messages
119
Reaction score
0

Homework Statement



find the jordan form of:
0 1 0 ... 0
0 0 1 ... 0
0 0 0 \ddots
0 0 0 ... 1
1 0 0 ... 0

Homework Equations


Hint: prove that A^n=ID and then blah blah blah.

The Attempt at a Solution


I assumed that A^n = ID and then i could solve it. i have no idea how to prove that A^n=ID. any help on that would be great.
 
Last edited:
Physics news on Phys.org
i'm assuming A is your matrix?

consider any nxn matrix, say B and consider the results of the multiplcation B.A on the columns of B...
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top