Jumping up on a rotating Earth

  • #1
Guywithquestions
3
0
Hello,

I know it suppose to be a relatively basic question but still somehow I can't fully understand it.
Let assume that a man jumps vertically on the equator, while the Earth is of course rotating. What will happen to the value of his linear momentum in the horizontal axis?
It seems to me that if the angular momentum must be conserved, than the linear momentum must decrease, because:
J = p x r
And since r is increased due to the jump
p must decrease
Is it correct? If so how is it possible since both angular momentum and linear momentum must be conserved?

Thank you kindly.
 

Answers and Replies

  • #2
hutchphd
Science Advisor
Homework Helper
2022 Award
5,514
4,699
The angular and linear momentum of the system (earth+man) will be conserved (because there are by assumption ~no external forces or torques on the system). The man, depending upon how he jumps, can change momentum for himself (and exactly equally and oppositely for the earth).
 
  • #3
Janus
Staff Emeritus
Science Advisor
Insights Author
Gold Member
3,755
1,730
Summary: If a man jumps off the equator, What will happen to the value of his linear momentum in the horizontal axis?

Hello,

I know it suppose to be a relatively basic question but still somehow I can't fully understand it.
Let assume that a man jumps vertically on the equator, while the Earth is of course rotating. What will happen to the value of his linear momentum in the horizontal axis?
It seems to me that if the angular momentum must be conserved, than the linear momentum must decrease, because:
J = p x r
And since r is increased due to the jump
p must decrease
Is it correct? If so how is it possible since both angular momentum and linear momentum must be conserved?

Thank you kindly.
His linear momentum remains constant. So while the radius for calculating angular momentum increases his angular velocity with respect to the center of rotation must decrease.

Below is a quick vector diagram of the situation:
The green arrow is his Vertical jump speed
Blue arrow is his tangential velocity due to the rotation of the Earth
Red arrows are his resultant velocity broken into two sections of equal time.
Cyan lines represent the angles swept out by the radial line.
Note that for the first time section of his trajectory the cyan line has swept through a larger angle than it does during the second time section of equal length. The cyan line grows in length but rotates slower as time goes on.
Momentum.png
 
  • Like
Likes lekh2003 and hutchphd
  • #4
Guywithquestions
3
0
Thank you for answering!
My problem rised from the equation j=p x r
And since r is increased and p (linear momentum) stays constant it seems as though j (angular momentum) must increase as well (contrary to staying constant).
If I understand correctly from your drawing it can be seen that the angle between the radius and the velocity vector increases and therefore the cross product stays the same over time.
 
  • #5
jbriggs444
Science Advisor
Homework Helper
11,690
6,372
And since r is increased and p (linear momentum) stays constant it seems as though j (angular momentum) must increase as well (contrary to staying constant).
Remember that angular momentum is not just the product of the magnitudes of r and p. It is the vector cross product. One way to understand the cross product is that it is not p that counts. It is only the component of p that is at right angles to r.
 

Suggested for: Jumping up on a rotating Earth

Replies
12
Views
534
Replies
37
Views
2K
  • Last Post
Replies
12
Views
1K
  • Last Post
Replies
5
Views
913
Replies
12
Views
522
Replies
32
Views
513
  • Last Post
Replies
9
Views
511
Replies
2
Views
382
Top