truewt
- 78
- 0
Can a limit of a function = infinity?
Moo Of Doom said:In general, yes. The definition is as follows:
\lim_{x\to a}f\left(x\right) = +\infty \mbox{ if and only if for any } \epsilon > 0, \mbox{ there exists a } \delta > 0 \mbox{ such that if } \left|x - a\right| < \delta, \mbox{ then } f(x) > \epsilon .
EDIT:
And if you want the limit as x approaches infinity, we simply modify the \delta condition a little:
\lim_{x\to \infty}f\left(x\right) = +\infty \mbox{ if and only if for any } \epsilon > 0, \mbox{ there exists a } \delta > 0 \mbox{ such that if } x > \delta, \mbox{ then } f(x) > \epsilon .