ohshiznit422
- 4
- 0
So I heard someone say that the cube root of 31 is a good approximation for ∏. This led me to thinking about higher roots and approximations.
ψ denotes the nearest whole number
\pi^{2} \approx 9.86960440109
ψ=10
\sqrt[2]{10}=3.16227766017
\pi^{3} \approx 31.00627668029
ψ=31
\sqrt[3]{31}=3.14138065239
\pi^{4} \approx 97.40909103400
ψ=97
\sqrt[4]{97}=3.13828899272
The percent error gets smaller as the root increases.
Is it then valid to say:
limit as x->∞
\sqrt[x]{ψ\pi^{x}} = \pi
ψ denotes the nearest whole number
\pi^{2} \approx 9.86960440109
ψ=10
\sqrt[2]{10}=3.16227766017
\pi^{3} \approx 31.00627668029
ψ=31
\sqrt[3]{31}=3.14138065239
\pi^{4} \approx 97.40909103400
ψ=97
\sqrt[4]{97}=3.13828899272
The percent error gets smaller as the root increases.
Is it then valid to say:
limit as x->∞
\sqrt[x]{ψ\pi^{x}} = \pi