K^p=K Meaning: Field Characteristic p

  • Thread starter Thread starter futurebird
  • Start date Start date
  • Tags Tags
    Notation
futurebird
Messages
270
Reaction score
0
K is a field and it has characteristic p \neq 0. What is the meaning of K^{p}=K -- ?
 
Physics news on Phys.org
K^p = { k^p : k in K }. So K^p = K means that every element in K has a pth root.
 
Thanks!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top