Kenetric Energys, verolcity and mass of a falling object?

AI Thread Summary
A rubber ball of mass m is dropped from a height of 10 m and reaches the ground in approximately 1.43 seconds, hitting at a velocity of about 14 m/s. After the first bounce, the ball retains 80% of its energy, allowing it to reach a height of 8 m. The time for the second bounce is calculated to be around 0.57 seconds, with the height after this bounce being approximately 6.4 m. The discussion highlights the importance of using gravitational potential energy and kinetic energy equations to solve for height and time. The ball continues to lose energy with each bounce until it eventually comes to rest.
stephanna
Messages
4
Reaction score
0
At t = 0 a rubber ball of mass m is dropped from a height of 10 m.
(i) When does it reach the ground? How fast is it moving when it hits the ground?
Each time it bounces, the ball looses 20% of its energy.
(ii) Calculate the height it reaches on the 1st bounce, and the time at which it hits the
ground for the second time and for the third time.
(iii) Find a formula for the time of the nth bounce. When does the ball come to rest?
[Hint: Look carefully at the times between bounces. You may use any formulae you know
from basic mechanics. The acceleration due to gravity is g = 9:81 m s^-2.]

2. Homework Equations
K.E. =1/2 * MV^2 Where M=mass V= Verlocity G=Gravity H=HEIGHT T=Time
P.E. =MGH
SO ...GH=1/2 * V^2 ...M is canceled from each side
V=H/T and V=(2*G*H)^-1/2 so both equations equal each other hence
T=H/(2*G*H)^-1/2
H=(1/2 * V^2)/G

3. The Attempt at a Solution
PART i)

GH=1/2 * V^2... T=H/(2*G*H)^-1/2

10/(2*10*9.81)^-1/2= 0.713921561 SECONDS

V=H/T 10/0.713921561 ms^-1 = 14.00714105

ii)
K.E. =1/2 * MV^2
1/2 * m *14.007^2 = 98.098MJ M is still in the equation as the mass is unknown

20% of the energy is now taken off

98.098MJ - ((98.098MJ/100)*20)= 78.4784MJ

V^2=(2*K.E.)/M
(78.4784MJ* 2)/M=156.9568

H=(1/2 * V^2)/G
H=(1/2*156.9568)/9.81= 8m Height at first bounce

Here is where i had the trouble
Im tring to find the time of the 2nd bounce but it works out smaller that the 1st bounce
20% of the energy is now taken off
78.4784MJ-((78.4784MJ/100)*20)= 62.7827MJ

V^2=(2*K.E.)/M
(62.7827MJ*2)/M= 125.56544

H=(1/2 * V^2)/G
H=(1/2*125.56544)/9.81= 6.3998m

T=H/(2*G*H)^-1/2 OR T= H/V 0.571125223
T=6.3998m/(2*9.81*6.3998)^-1/2 =0.571125223 seconds this value is smaller than the first value
 
Physics news on Phys.org
For Part i, use the equation y = (1/2)gt^2, where y is the height and t is the time. Solve for t. You should get 1.43 seconds. To find out how fast it's moving, use the equation v = sqrt(2gh), where v is the speed and h is the height. You should get 14 meters per second.

For part ii, if it loses 20% of its energy on the first bounce, that means it still has 80% of it left. From the gravitational potential energy equation, U = mgh, you know that the new potential energy will be 0.8*U, and from there you can figure out the height. It should be 8 meters after the first bounce. Knowing this technique and the given hint, you can figure out the rest.
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top