Kepler's second law derivation from angular momentum conservation

Click For Summary

Discussion Overview

The discussion revolves around the derivation of Kepler's second law using the conservation of angular momentum, particularly in the context of elliptical orbits. Participants explore the validity of angular momentum expressions and their implications in both classical mechanics and quantum models.

Discussion Character

  • Technical explanation
  • Conceptual clarification
  • Debate/contested
  • Historical

Main Points Raised

  • One participant questions the validity of the expression $$ v = r \frac {d \theta} {dt} $$ at every point in an elliptical orbit, suggesting it may only hold true for circular paths.
  • Another participant explains the relationship between the area swept out by the radius vector and angular momentum, using vector cross products to illustrate the concept.
  • A different participant notes that the conservation of angular momentum is a general principle applicable to any central potential, not just the Kepler potential.
  • Discussion includes the relevance of angular momentum conservation to the Bohr model of the hydrogen atom, where it is suggested that electrons exhibit quantized angular momenta.
  • Further elaboration on the Bohr-Sommerfeld model indicates that action is quantized in multiples of Planck's constant, linking it to angular momentum quantization.
  • One participant reiterates a previous explanation regarding the area swept out and acknowledges a missing mass factor in the expression for angular momentum.

Areas of Agreement / Disagreement

Participants express various viewpoints on the validity of angular momentum expressions in elliptical orbits and the implications for both classical and quantum mechanics. No consensus is reached, and multiple competing views remain present throughout the discussion.

Contextual Notes

Some participants point out limitations in the assumptions made regarding the applicability of certain expressions in different orbital shapes, as well as the dependence on definitions related to angular momentum and area swept out.

mr_sparxx
Messages
31
Reaction score
5
TL;DR
Many texts state that Kepler's second law can be derived from conservation of angular momentum, however all demonstrations I have found make an assumption that is not clear for me
Many texts state that in an elliptic orbit you can find angular momentum magnitude as

$$ L = r m v = m r^2 \frac {d \theta} {dt} $$

I wonder if
$$ v = r \frac {d \theta} {dt} $$

is valid at every point. I understand this approximation in a circumference or radius r but what about an arc of ellipse?

Thank you.
 
  • Like
Likes   Reactions: malawi_glenn
Physics news on Phys.org
I usually explain it like this (dr vector is exaggerated for the sake of the picture)
1657818834123.png

Where I used that the area of the entire parallellogram formed by the r and dr vectors is equal to the magnitude of their cross product. Here we have half a parallellogram, hence the facor 1/2

Here it is with LaTex:
##\mathrm{d}\vec r = \vec v \mathrm{d}t##
## \mathrm{d} A = \frac{1}{2}| \vec r \times \mathrm{d}\vec r| = \frac{1}{2}| \vec r \times \vec v|\mathrm{d}t =\frac{1}{2}| \vec L |\mathrm{d}t ##

If L is conserved then ## \dfrac{\mathrm{d}A}{\mathrm{d}t}## is constant and thus by integrating it we get the area swept out during a certain time interval is constant along the path
 
Last edited by a moderator:
  • Like
  • Love
Likes   Reactions: Delta2, mr_sparxx and vanhees71
Just to point out that this is not particular to the Kepler potential. It is true for any central potential as angular momentum ##L = mr^2\dot\theta## is conserved due to the rotational symmetry.
 
  • Like
Likes   Reactions: mr_sparxx, vanhees71 and malawi_glenn
It was also important for the Bohr quantum model of the hydrogen atom. Since the potential is spherical symmetric, angular momentm is conserved. Idea was to hypothesize that electrons bound to proton only exhibit certain angular momenta, namely an integer multiple of Plancks constant / 2 (and was it a factor of π as well somewhere?)
 
The true spirit of the Bohr-Sommerfeld model is that for (quasi-)periodic motion the action is quantized in multiples of ##h=2 \pi \hbar##. This implies a quantization of angular-momentum components as integer multiples of ##\hbar## since angular momentum is the canonical conjugate to angle variables.
 
  • Like
Likes   Reactions: malawi_glenn
drmalawi said:
I usually explain it like this (dr vector is exaggerated for the sake of the picture)
View attachment 304176
Where I used that the area of the entire parallellogram formed by the r and dr vectors is equal to the magnitude of their cross product. Here we have half a parallellogram, hence the facor 1/2

Here it is with LaTex:
##\mathrm{d}\vec r = \vec v \mathrm{d}t##
## \mathrm{d} A = \frac{1}{2}| \vec r \times \mathrm{d}\vec r| = \frac{1}{2}| \vec r \times \vec v|\mathrm{d}t =\frac{1}{2}| \vec L |\mathrm{d}t ##

If L is conserved then ## \dfrac{\mathrm{d}A}{\mathrm{d}t}## is constant and thus by integrating it we get the area swept out during a certain time interval is constant along the path

I guess you mean ( mass is missing)
## \mathrm{d} A = \frac{1}{2}| \vec r \times \mathrm{d}\vec r| = \frac{1}{2}| \vec r \times \vec v|\mathrm{d}t =\frac{1}{2m}| \vec L |\mathrm{d}t ##

Nice way of explaining it. Just what I was looking for. Thank you.
 
  • Like
Likes   Reactions: Delta2, malawi_glenn and vanhees71
mr_sparxx said:
I guess you mean ( mass is missing)
## \mathrm{d} A = \frac{1}{2}| \vec r \times \mathrm{d}\vec r| = \frac{1}{2}| \vec r \times \vec v|\mathrm{d}t =\frac{1}{2m}| \vec L |\mathrm{d}t ##

Nice way of explaining it. Just what I was looking for. Thank you.
Yes I forgot mass.
 
  • Like
Likes   Reactions: Delta2 and vanhees71

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 30 ·
2
Replies
30
Views
3K
  • · Replies 30 ·
2
Replies
30
Views
3K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 17 ·
Replies
17
Views
1K