For the kernel, solving the equations defining the kernel, I arrived at the two independent equations x+ 3y= 0 and y+ z= 0. That told me that I could choose any one of x, y, or z however I wished and solve for the other 2. I have "one degree of freedom" and so the subspace is one dimensional. Of course, if all three equations had been independent, I could have solved for the unique solution: x= y= z= 0: in that case the linear transformation would be "one-to-one".
It is possible, say the linear transformation were T<x,y,z>= <x- y+ z, 2x- 2y+ 2z, -x+ y- z>, that I would find that all 3 equations, x- y+ z= 0, 2x- 2y+ 2z= 0, -x+ y- z= 0 were just multiples of one another: they all reduce to x- y+ z= 0. In general, one equation allows us to solve for one of the variables and reduce the dimension by one. Since there is only one independent equation here, the dimension of the kernel is 3- 1= 2.
More precisely, I can solve for y= x+ z so I am free to choose any values I want for x or z and then solve for y: If x= 1 and z= 0 (I'm a simple soul- I like simple numbers) y= 1 so we have <1, 1, 0>. If x= 0 and z= 1, y= 1 so <0, 1, 1>. A basis for the kernel is {<1, 1, 0>, <0, 1, 1>}. Any vector in that space can be written as a<1, 1, 0>+ b<0, 1, 1>= <a, a+b, b>. I'll leave it to you to see that the linear transformation applied to <a, a+ b, b> gives <0, 0, 0>.
Of course, any subspace has an infinite number of possible bases. We could as easily have solved x-y+z= 0 for z= y- x. Now taking x= 1, y= 0, then z= -1 and if we take x= 0, y= 1, then z= 1. We get {<1, 0, -1> and <0, 1, 1> which is another basis for the same subspace. You can prove that by showing that <1, 0, -1> and <0, 1, 1> can be written as linear combinations of <1, 1, 0> and <0, 1, 1> and vice-versa.
How about the image of this linear transformation? T<x, y, z= <x- y+ z, 2x- 2y+ 2z, -x+ y- z> so, taking x= 1, y= z= 0, T<1, 0, 0>= <1, 2, ->, taking x= z= 0, y= 1, T<0, 1, 0>= <-1, -2, 1> and taking x= y= 0, z= 1, T<0, 0, 1>= <1, 2, -1>. It's easy to see that those are all multiples of one another so we really have just one independent vector. We could use anyone of those as the single vector in the basis. The image has dimension 1 and again we see that the dimension of the kernel plus the dimension of the image is the dimension of the whole space, 3.
By the way do you see how my recommendation of using "x= 1, y= z= 0, then x= z= 0, y= 1, etc." just gives the standard basis: <1, 0, 0>, <0, 1, 0>, <0, 0, 1>?