Klein-gordan Hamiltonian time-independent?

geoduck
Messages
257
Reaction score
2
How can you tell if the Klein-Gordan Hamiltonian, H=\int d^3 x \frac{1}{2}(\partial_t \phi \partial_t \phi+\nabla^2\phi+m^2\phi^2) is time-independent? Don't you have to plug in the expression for the field to show this? But isn't the only way you know how the field evolves with time is through \partial_t \phi=i[H,\phi], and in order to evaluate this you have to assume the Hamiltonian is independent of time to use the equal-time commutation relations?
 
Physics news on Phys.org
You should look at a simple problem in classical mechanics.

A Hamiltonian is (rather sloppy) called "time-independent" if it is not "explicitly time-dependent", i.e. if ∂H/∂t = 0; that means that the time-dependence is hidden in the canonical variables. For the simple harmonic oscillator H ~ p² + x² the canonical variables p,x carry (implicitly) time-dependence via the e.o.m., but ∂H/∂t = 0 and b/c of conservation of energy dH/dt = 0.

The Klein-Gordon-Hamiltonian is "time-independent" in the same sense, i.e. ∂H/∂t = 0.

Remark: what you have written down is not really the Hamiltonian, which generates the e.o.m., but only the energy. In a Hamiltonian you have to eliminate the velocities and express everything in terms of generalized positions and momenta, i.e. in terms of φ(x,t) and π(x,t) ~ ∂0φ(x,t). Therefore H = H[φ,π] and the e.o.m. for φ and π are derived via the commutators [H,φ] and [H,π], respectively.

For a time-independent system the canonical e.o.m. of an operator A are generated solely via commutators [H,A]. Therefore the time-dependence of H i.e. dH/dt is generated via [H,H] which is zero, of course.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top