MHB Kunz - Vanishing Ideal and Minimum Polynomial

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Minimum Polynomial
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Ernst Kunz book, "Introduction to Plane Algebraic Curves"

I need help with some aspects of Kunz' definition of the vanishing ideal of an algebraic curve and Kunz' definition of a minimal polynomial ...

The relevant text from Kunz is as follows:https://www.physicsforums.com/attachments/4552
https://www.physicsforums.com/attachments/4553My questions on the above text are as follows ... ...Question 1In the text above from Kunz, we read the following ...

" ... ... Theorem 1.7 $$\mathscr{J} ( \Gamma )$$ is the principal ideal generated by $$f_1 \ ... \ ... \ f_n$$. ... ... "

This definition surprised me since I think of a principal ideal as being generated by one element ... ... ? ...

But the I noted that in Definition 1.8 Kunz writes $$\mathscr{J} ( \Gamma ) = (f) $$ with $$f \in K [ X,Y ]$$ ... ...

SO maybe Kunz is defining $$\mathscr{J} ( \Gamma )$$ as a principal ideal generated by $$f$$ ... ... but also generated by $$f_1 \ ... \ ... \ f_n$$ ... ... is that correct?Can someone please confirm that my analysis is correct ... or possibly correct the errors in my thinking ...
Question 2In the above text, Kunz writes the following:

" ... ... Definition 1.8 Given $$\mathscr{J} ( \Gamma ) = (f)$$ with $$f \in K [ X,Y ]$$, we call $$f$$ a minimal polynomial for \Gamma. ... ... "I am a bit puzzled by this since I am more used to a minimum polynomial being associated with the root $$\alpha$$ of a polynomial ... not being associated with an algebraic curve $$\Gamma$$ ... ...

... ... indeed a more usual definition is found in Steven Roman's book on Field Theory ... ... as follows:View attachment 4555
https://www.physicsforums.com/attachments/4554

Can someone clarify this by showing that Kunz and Roman's definitions of minimum polynomial are actually the same ... ...

Peter
 
Physics news on Phys.org
Peter said:
Question 1In the text above from Kunz, we read the following ...

" ... ... Theorem 1.7 $$\mathscr{J} ( \Gamma )$$ is the principal ideal generated by $$f_1 \ ... \ ... \ f_n$$. ... ... "

This definition surprised me since I think of a principal ideal as being generated by one element ... ... ? ...

But the I noted that in Definition 1.8 Kunz writes $$\mathscr{J} ( \Gamma ) = (f) $$ with $$f \in K [ X,Y ]$$ ... ...

SO maybe Kunz is defining $$\mathscr{J} ( \Gamma )$$ as a principal ideal generated by $$f$$ ... ... but also generated by $$f_1 \ ... \ ... \ f_n$$ ... ... is that correct?Can someone please confirm that my analysis is correct ... or possibly correct the errors in my thinking ...

I think you might've misread the notation. He doesn't say that $\mathcal{J}(\Gamma) = (f_1,\ldots, f_h)$ but $\mathcal{J}(\Gamma) = (f_1\cdots f_h)$, in other words, $\mathcal{J}(\Gamma)$ is generated by the product $f_1\ldots f_h$, and not by the individual $f_1,\ldots, f_h$. So he has used the term "principal ideal" in the usual way.
Question 2In the above text, Kunz writes the following:

" ... ... Definition 1.8 Given $$\mathscr{J} ( \Gamma ) = (f)$$ with $$f \in K [ X,Y ]$$, we call $$f$$ a minimal polynomial for \Gamma. ... ... "I am a bit puzzled by this since I am more used to a minimum polynomial being associated with the root $$\alpha$$ of a polynomial ... not being associated with an algebraic curve $$\Gamma$$ ... ...

... ... indeed a more usual definition is found in Steven Roman's book on Field Theory ... ... as follows:Can someone clarify this by showing that Kunz and Roman's definitions of minimum polynomial are actually the same ... ...

Peter

You haven't made a parallel comparison. Roman is referring to the minimum polynomial for an algebraic element of a field, whereas Kunz is referring to a minimum polynomial for a subset of the affine plane over a field.
 
Euge said:
I think you might've misread the notation. He doesn't say that $\mathcal{J}(\Gamma) = (f_1,\ldots, f_h)$ but $\mathcal{J}(\Gamma) = (f_1\cdots f_h)$, in other words, $\mathcal{J}(\Gamma)$ is generated by the product $f_1\ldots f_h$, and not by the individual $f_1,\ldots, f_h$. So he has used the term "principal ideal" in the usual way.

You haven't made a parallel comparison. Roman is referring to the minimum polynomial for an algebraic element of a field, wheras Kunz is referring to a minimum polynomial for a subset of the affine plane over a field.
Thanks Euge ...

You write:

"I think you might've misread the notation. He doesn't say that $\mathcal{J}(\Gamma) = (f_1,\ldots, f_h)$ but $\mathcal{J}(\Gamma) = (f_1\cdots f_h)$, in other words, $\mathcal{J}(\Gamma)$ is generated by the product $f_1\ldots f_h$, and not by the individual $f_1,\ldots, f_h$. So he has used the term "principal ideal" in the usual way."

Yes, you are quite right ... thanks for that ...
You also write:

"You haven't made a parallel comparison. Roman is referring to the minimum polynomial for an algebraic element of a field, whereas Kunz is referring to a minimum polynomial for a subset of the affine plane over a field."

Yes, OK ... see that ...

Is Kunz definition a common/traditional definition? ... the definitions I found in my textbooks seemed to all refer to an algebraic element of a field ... ...

Peter
 
Peter said:
Is Kunz definition a common/traditional definition? ... the definitions I found in my textbooks seemed to all refer to an algebraic element of a field ... ...

Yes, I believe Kunz's definition is common.
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
Back
Top