Kunz - Vanishing Ideal and Minimum Polynomial

  • Context: MHB 
  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Minimum Polynomial
Click For Summary
SUMMARY

The forum discussion centers on Ernst Kunz's definitions of the vanishing ideal and minimal polynomial in his book "Introduction to Plane Algebraic Curves." Participants clarify that Kunz defines the vanishing ideal $$\mathscr{J}(\Gamma)$$ as the principal ideal generated by the product of polynomials $$f_1 \cdots f_h$$, rather than by individual generators. Additionally, the minimal polynomial in Kunz's context refers to a polynomial associated with an algebraic curve $$\Gamma$$, contrasting with the more traditional definition related to algebraic elements of a field as presented in Steven Roman's "Field Theory."

PREREQUISITES
  • Understanding of algebraic curves and ideals in algebraic geometry.
  • Familiarity with polynomial rings, specifically $$K[X,Y]$$.
  • Knowledge of the concept of minimal polynomials in field theory.
  • Ability to interpret mathematical notation and definitions in algebraic contexts.
NEXT STEPS
  • Study the concept of principal ideals in algebraic geometry, focusing on examples from Kunz's work.
  • Examine the differences between minimal polynomials in field theory and those in algebraic geometry.
  • Review Steven Roman's "Field Theory" for traditional definitions of minimal polynomials.
  • Explore additional resources on algebraic curves to deepen understanding of their properties and applications.
USEFUL FOR

Mathematicians, algebraic geometers, and students studying algebraic curves and polynomial theory will benefit from this discussion, particularly those interested in the nuances of definitions in different mathematical contexts.

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Ernst Kunz book, "Introduction to Plane Algebraic Curves"

I need help with some aspects of Kunz' definition of the vanishing ideal of an algebraic curve and Kunz' definition of a minimal polynomial ...

The relevant text from Kunz is as follows:https://www.physicsforums.com/attachments/4552
https://www.physicsforums.com/attachments/4553My questions on the above text are as follows ... ...Question 1In the text above from Kunz, we read the following ...

" ... ... Theorem 1.7 $$\mathscr{J} ( \Gamma )$$ is the principal ideal generated by $$f_1 \ ... \ ... \ f_n$$. ... ... "

This definition surprised me since I think of a principal ideal as being generated by one element ... ... ? ...

But the I noted that in Definition 1.8 Kunz writes $$\mathscr{J} ( \Gamma ) = (f) $$ with $$f \in K [ X,Y ]$$ ... ...

SO maybe Kunz is defining $$\mathscr{J} ( \Gamma )$$ as a principal ideal generated by $$f$$ ... ... but also generated by $$f_1 \ ... \ ... \ f_n$$ ... ... is that correct?Can someone please confirm that my analysis is correct ... or possibly correct the errors in my thinking ...
Question 2In the above text, Kunz writes the following:

" ... ... Definition 1.8 Given $$\mathscr{J} ( \Gamma ) = (f)$$ with $$f \in K [ X,Y ]$$, we call $$f$$ a minimal polynomial for \Gamma. ... ... "I am a bit puzzled by this since I am more used to a minimum polynomial being associated with the root $$\alpha$$ of a polynomial ... not being associated with an algebraic curve $$\Gamma$$ ... ...

... ... indeed a more usual definition is found in Steven Roman's book on Field Theory ... ... as follows:View attachment 4555
https://www.physicsforums.com/attachments/4554

Can someone clarify this by showing that Kunz and Roman's definitions of minimum polynomial are actually the same ... ...

Peter
 
Physics news on Phys.org
Peter said:
Question 1In the text above from Kunz, we read the following ...

" ... ... Theorem 1.7 $$\mathscr{J} ( \Gamma )$$ is the principal ideal generated by $$f_1 \ ... \ ... \ f_n$$. ... ... "

This definition surprised me since I think of a principal ideal as being generated by one element ... ... ? ...

But the I noted that in Definition 1.8 Kunz writes $$\mathscr{J} ( \Gamma ) = (f) $$ with $$f \in K [ X,Y ]$$ ... ...

SO maybe Kunz is defining $$\mathscr{J} ( \Gamma )$$ as a principal ideal generated by $$f$$ ... ... but also generated by $$f_1 \ ... \ ... \ f_n$$ ... ... is that correct?Can someone please confirm that my analysis is correct ... or possibly correct the errors in my thinking ...

I think you might've misread the notation. He doesn't say that $\mathcal{J}(\Gamma) = (f_1,\ldots, f_h)$ but $\mathcal{J}(\Gamma) = (f_1\cdots f_h)$, in other words, $\mathcal{J}(\Gamma)$ is generated by the product $f_1\ldots f_h$, and not by the individual $f_1,\ldots, f_h$. So he has used the term "principal ideal" in the usual way.
Question 2In the above text, Kunz writes the following:

" ... ... Definition 1.8 Given $$\mathscr{J} ( \Gamma ) = (f)$$ with $$f \in K [ X,Y ]$$, we call $$f$$ a minimal polynomial for \Gamma. ... ... "I am a bit puzzled by this since I am more used to a minimum polynomial being associated with the root $$\alpha$$ of a polynomial ... not being associated with an algebraic curve $$\Gamma$$ ... ...

... ... indeed a more usual definition is found in Steven Roman's book on Field Theory ... ... as follows:Can someone clarify this by showing that Kunz and Roman's definitions of minimum polynomial are actually the same ... ...

Peter

You haven't made a parallel comparison. Roman is referring to the minimum polynomial for an algebraic element of a field, whereas Kunz is referring to a minimum polynomial for a subset of the affine plane over a field.
 
Euge said:
I think you might've misread the notation. He doesn't say that $\mathcal{J}(\Gamma) = (f_1,\ldots, f_h)$ but $\mathcal{J}(\Gamma) = (f_1\cdots f_h)$, in other words, $\mathcal{J}(\Gamma)$ is generated by the product $f_1\ldots f_h$, and not by the individual $f_1,\ldots, f_h$. So he has used the term "principal ideal" in the usual way.

You haven't made a parallel comparison. Roman is referring to the minimum polynomial for an algebraic element of a field, wheras Kunz is referring to a minimum polynomial for a subset of the affine plane over a field.
Thanks Euge ...

You write:

"I think you might've misread the notation. He doesn't say that $\mathcal{J}(\Gamma) = (f_1,\ldots, f_h)$ but $\mathcal{J}(\Gamma) = (f_1\cdots f_h)$, in other words, $\mathcal{J}(\Gamma)$ is generated by the product $f_1\ldots f_h$, and not by the individual $f_1,\ldots, f_h$. So he has used the term "principal ideal" in the usual way."

Yes, you are quite right ... thanks for that ...
You also write:

"You haven't made a parallel comparison. Roman is referring to the minimum polynomial for an algebraic element of a field, whereas Kunz is referring to a minimum polynomial for a subset of the affine plane over a field."

Yes, OK ... see that ...

Is Kunz definition a common/traditional definition? ... the definitions I found in my textbooks seemed to all refer to an algebraic element of a field ... ...

Peter
 
Peter said:
Is Kunz definition a common/traditional definition? ... the definitions I found in my textbooks seemed to all refer to an algebraic element of a field ... ...

Yes, I believe Kunz's definition is common.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
983
Replies
37
Views
5K
Replies
1
Views
1K
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K