Lagrangian Constraint Forces

  • I
  • Thread starter Eh6794
  • Start date
  • #1
Eh6794
1
0
TL;DR Summary
I am confused about the constraint I choose for my mechanics problems.

Let's say I have an inclined plane, a ball rolling off of a half hemisphere or a pendulum and I need to find a tension, friction or normal force.

After I derive the lagrangian, I need to find a constraint, but how do I choose a constraint?

I have worked through a couple of problems with solutions, but it seems like I find the coordinate/variable in the direction of the force I want? Ex. pendulum tension would be L?
ii
 

Answers and Replies

  • #2
LCSphysicist
636
153
Summary:: I am confused about the constraint I choose for my mechanics problems.

Let's say I have an inclined plane, a ball rolling off of a half hemisphere or a pendulum and I need to find a tension, friction or normal force.

After I derive the lagrangian, I need to find a constraint, but how do I choose a constraint?

I have worked through a couple of problems with solutions, but it seems like I find the coordinate/variable in the direction of the force I want? Ex. pendulum tension would be L?

ii
"After I derive the lagrangian, I need to find a constraint, but how do I choose a constraint?" Maybe |R| = cte?
That is, ##r = a## => ##r-a = 0##, it is a good holonomic constraint. And i don't know another constraint in this cases you cited. You find a constraint studying the restrictions of the system, let's say like this.

"I have worked through a couple of problems with solutions, but it seems like I find the coordinate/variable in the direction of the force I want? Ex. pendulum tension would be L?"
I do not understand. What do you mean?
 
  • #3
kuruman
Science Advisor
Homework Helper
Insights Author
Gold Member
12,854
6,059
You choose the constraint that, ahem, constrains your generalized coordinates not to be just anything. For example, in the case of a block sliding down a frictionless inclined plane you can choose generalized coordinates ##x## and ##y## along the vertical and the horizontal and write $$\mathcal L=\frac{1}{2}m\dot x^2+\frac{1}{2}m\dot y^2+mgy.$$The constraint is that the block must stay on the plane so if you pick a value for one coordinate, the other is strictly specified. Here the relevant constraint is ##y=x~\tan\theta## where ##\theta## is the angle of the incline relative to the horizontal. Then the Lagrangian becomes $$\mathcal L=\frac{1}{2}m\dot x^2+\frac{1}{2}m\dot x^2\tan^2\theta+mgx\tan\theta.$$
 

Suggested for: Lagrangian Constraint Forces

Replies
1
Views
350
  • Last Post
Replies
20
Views
889
  • Last Post
Replies
2
Views
296
  • Last Post
Replies
1
Views
319
Replies
1
Views
288
  • Last Post
Replies
5
Views
826
Replies
30
Views
911
Replies
6
Views
597
  • Last Post
Replies
32
Views
997
  • Last Post
Replies
5
Views
539
Top