Lagrangian mechanics - generalised coordinates question

Click For Summary
SUMMARY

This discussion focuses on the application of Lagrangian mechanics to a rigid body, specifically a pencil, using generalized coordinates. The kinetic energy (T) is expressed as a function of linear and rotational components, while potential energy (V) is defined as mgz. The main inquiry revolves around the necessity of expressing the Cartesian coordinates (x, y, z) as functions of the Euler angles (θ, φ) to derive the correct equations of motion (EOM). The consensus is that while it may not always be necessary, understanding the relationship between these coordinates is crucial for accurate EOM in complex systems.

PREREQUISITES
  • Understanding of Lagrangian mechanics and its formulation
  • Familiarity with kinetic and potential energy equations
  • Knowledge of generalized coordinates and their application in dynamics
  • Basic understanding of Euler angles and rigid body motion
NEXT STEPS
  • Study the derivation of the Lagrangian for rigid bodies using Euler angles
  • Learn about the moment of inertia and its role in rotational dynamics
  • Explore the concept of center of mass (CoM) and its significance in mechanics
  • Investigate more complex systems involving multiple degrees of freedom in Lagrangian mechanics
USEFUL FOR

Students and professionals in physics, mechanical engineering, and robotics who are looking to deepen their understanding of Lagrangian mechanics and its application to rigid body dynamics.

curiousPep
Messages
15
Reaction score
1
I think I undeerstand Lagrangian mechanics but I have a question that will help to clarify some concepts.
Imagine I throw a pencil. For that I have 5 generalised coordinates (x,y,z and 2 rotational).
When I express Kinetic Energy (T) as:
$$T = 1/2m\dot{x^{2}}+1/2m\dot{y^{2}}+1/2m\dot{z^{2}} + I\dot{\theta^{2}} + I\dot{\phi^{2}}$$
and potential energy (V)
$$V=mgz$$
Then I use Lagrangian to find the EOM.
For x,y,z is fine but for $$\theta$$ and $$\phi$$ I have a question. I see how x,y,z can be a expressed as functions of $$\theta\;and\;\phi$$, but why should I do this. I mean in cases that something is less obvious, then I will get the wrong EOM.
Thank you, and I hope the latex code works.
 
Physics news on Phys.org
You need double dollars or double hashes to delimit Latex here.

Im not sure I understand your question. A point particle has linear KE. A extended rigid body has linear KE of the CoM plus rotational KE of the body about the CoM. You have to know to consider both.
 
  • Like
Likes   Reactions: vanhees71
PeroK said:
You need double dollars or double hashes to delimit Latex here.

Im not sure I understand your question. A point particle has linear KE. A extended rigid body has linear KE of the CoM plus rotational KE of the body about the CoM. You have to know to consider both.
I will try to explain it better, cause I see it's a bit confusing.
When I have a rigid body like a pencil of length 2L, the generalized coordinates defined are x,y,z (COM relative to (0,0)) and
$$\theta, \phi$$ (Euler's angles).
However, x,y,z can be expressed as functions of $$\theta,\phi$$.
For example: $$x = X + Lsin\theta cos\phi$$. My question is that, why do I need to do this in oder to find the right EOM for $$\theta\;and\;\phi$$?
Or is this not needed?I mean in a more complex case the relationship mu not be that obvious, so I won't know if my EOM are right or not.
 
If ##(X, Y, Z)## are the coordinates of the CoM, then that's what you need for ##T##. The rotational motion involves the moment of inertia ##I##, which encapsulates the position of every point mass in the body in terms of calculating rotational KE.

Your ##x## above seems to be just the position of one end of the pencil!
 
The right degrees of freedom are the center-of-mass position components ##\vec{X}## and the three Euler angles for the rotation of the rigid body around this center of mass. So what you look for is the Lagrangian for the (symmetric) spinning top in terms of Euler angles. See, e.g.,

https://hepweb.ucsd.edu/ph110b/110b_notes/node36.html

To simplify the equations somewhat, you may neglect the rotation around the axis of the pencil, because the corresponding moment of inertia is small compared to that around any axis perpendicular to it, i.e., you may set ##I^{(3)}=0##.
 
  • Like
Likes   Reactions: wrobel

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 43 ·
2
Replies
43
Views
5K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
655
  • · Replies 2 ·
Replies
2
Views
2K