Lagrangian Mechanics: Variable Mass System?

AI Thread Summary
Lagrangian mechanics, defined as L = T - U, describes a dynamic system using the time derivative of positional partial derivatives. The validity of this definition for variable mass systems is questioned, particularly regarding whether partial derivatives with respect to mass are necessary. It is suggested that if mass changes with time, it should be treated in the total time derivative, while position-dependent mass would require differentiation in the partial derivatives. The discussion highlights the complexity of energy conservation when mass is not constant, especially if mass is decreasing or being transferred. The scenario of a mass on a spring with a decreasing mass and an applied force introduces further considerations for the application of Lagrangian mechanics.
Supfresh
Messages
4
Reaction score
0
First, to make sure i have this right, lagrangian mechanics, when describing a dynamic system, is the time derivative of the positional partial derivatives (position and velocity) of the lagrangian of the system, which is the difference between the kinetic and potential energy of the system. (set equal to external forces on the system, Q)

L = T-U

is this right?

So my question is:

is the definition of a lagrangian, T-U, valid only for constant mass systems or can it still be used for variable mass systems? what about the derivatives of the lagrangian, would i need to find the partial derivative of the lagrangian with respect to mass? and finally, I am assuming the answers to these questions are very different if we are talking about a time varying mass vs a mass that varies with postion, yes?

Any help would be much appreciated. As I am sure you can tell, i am very lost at the moment

As background for what I am working on, it's a mass on a spring (assuming attached to a rigid/ non-moving body, so for now 1 degree of freedom) with the mass decresing with respect to time. Finally as the mass decreases there is a perodic downward force applied to the mass decreasing in amplitude proportional to the decrease in mass.
 
Last edited by a moderator:
Physics news on Phys.org
Hmmm, interesting question. My initial response was that it should still work as long as all the mass is accounted for, but then I saw your specific scenario. If mass was simply moving from body A to body B, both in the problem, I think it would work. If mass was a function of position, it would be differentiated in the partial derivatives. If it was a function of just time, it would be be differentiated in the total time derivative, so I don't see why it wouldn't work.

However, if mass was simply disappearing it seems like you would just have energy disappearing, which strikes me as something that would mess things up (since a big part of the lagrangian is the trade in energy between T and U).

But then your situation is even more interesting, because you actually are putting more T in, in the form of that force. Hmmm, let me think about this.
 
Well i ended up proceeding as i would in a constant mass problem and then just differentiating mass w/respect to time in the total time derivative. Which gave me the following diff equation:

\ddot{m}\ddot{x} + \dot{m}\dot{x} + kx + mg = F(t)

substituting in F(t),

\ddot{m}\ddot{x} + \dot{m}\dot{x} + kx + mg = g(NM-\frac{tω}{2\pi}M)[\frac{1}{2}cos(ωt)+1]

Now to see if i remember how to use maple :eek:
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...
Back
Top