Laplace equation polar coordinates

Click For Summary

Discussion Overview

The discussion revolves around solving Laplace's equation in polar coordinates for a circular disk with a specific piecewise boundary condition. Participants explore methods for obtaining the solution and the implications of the boundary conditions on the potential distribution.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Homework-related

Main Points Raised

  • Some participants express uncertainty about how to start solving Laplace's equation in polar form.
  • One participant mentions using separation of variables to express the solution in terms of angular and radial components.
  • Another participant proposes a general form for the solution involving a series expansion with coefficients dependent on boundary conditions.
  • Participants discuss the integration of trigonometric functions over specified intervals to determine the coefficients in the series solution.
  • There are calculations presented for the coefficients \(A_n\), \(B_n\), and \(A_0\) based on the boundary conditions, with some participants seeking clarification on the usability of these forms.

Areas of Agreement / Disagreement

Participants generally agree on the approach of using separation of variables and series expansion, but there is no consensus on the final form of the coefficients or the overall solution, as some participants are still working through the details and expressing uncertainty.

Contextual Notes

Participants note the dependence of the solution on the specific boundary conditions and the challenge of integrating trigonometric functions over the defined intervals. There are unresolved steps in the mathematical process, particularly regarding the simplification of coefficients.

Dustinsfl
Messages
2,217
Reaction score
5
I have never solved an equation in polar form. I am not sure with how to start.

Solve Laplace's equation on a circular disk of radius a subject to the piecewise boundary condition
$$
u(a,\theta) = \begin{cases}
1, & \frac{\pi}{2} - \epsilon < \theta < \frac{\pi}{2} + \epsilon\\
0, & \text{otherwise}
\end{cases}
$$
where $\epsilon \ll 1$. Physically, this would reflect the electric potential distribution on a conducting disk whose edge is almost completely grounded except a small portion of angular extent $\Delta\theta = 2\epsilon$ around the location $\theta = \frac{\pi}{2}$. Obtain the solution to this problem and plot the solution for the case of $a = 1$ and $\epsilon = 0.05$.
 
Physics news on Phys.org
dwsmith said:
I have never solved an equation in polar form. I am not sure with how to start.

Solve Laplace's equation on a circular disk of radius a subject to the piecewise boundary condition
$$
u(a,\theta) = \begin{cases}
1, & \frac{\pi}{2} - \epsilon < \theta < \frac{\pi}{2} + \epsilon\\
0, & \text{otherwise}
\end{cases}
$$
where $\epsilon \ll 1$. Physically, this would reflect the electric potential distribution on a conducting disk whose edge is almost completely grounded except a small portion of angular extent $\Delta\theta = 2\epsilon$ around the location $\theta = \frac{\pi}{2}$. Obtain the solution to this problem and plot the solution for the case of $a = 1$ and $\epsilon = 0.05$.

The method of solving a Laplace's equation in polar coordinates can be found >>here<< (Refer Example 3).
 
Sudharaka said:
The method of solving a Laplace's equation in polar coordinates can be found >>here<< (Refer Example 3).

I figured out how to solve in polar. However, this problem is still posing a lot of difficulty.
 
By separation of variables, we have
$$
\begin{cases}
\Theta(\theta) = A\cos\lambda\theta + B\sin\lambda\theta\\
R(r) = r^{\pm\lambda}
\end{cases}
$$
So how do I use the conditions now?
 
So I have that
$$
u(r,\theta) = \alpha_0 + \sum_{n = 1}^{\infty}r^{n}(A_n\cos n\theta + B_n\sin n\theta).
$$
Using the final condition, we have
$$
u(a,\theta) = \alpha_0 + \sum_{n = 1}^{\infty}a^{n}(A_n\cos n\theta + B_n\sin n\theta) = \begin{cases}
1, & \frac{\pi}{2} - \epsilon < \theta < \frac{\pi}{2} + \epsilon\\
0, & \text{otherwise}
\end{cases}
$$
Correct?
$$
A_na^n\int_{-\pi}^{\pi}\cos^2 n\theta d\theta = \left[\int_{-\pi}^{\frac{\pi}{2}-\epsilon}0\cos n\theta d\theta + \int_{\frac{\pi}{2}-\epsilon}^{\frac{\pi}{2}+\epsilon}\cos n\theta d\theta + \int_{\frac{\pi}{2}+\epsilon}^{\pi}0\cos n\theta d\theta\right]
$$
 
Last edited:
dwsmith said:
So I have that
$$
u(r,\theta) = \alpha_0 + \sum_{n = 1}^{\infty}r^{n}(A_n\cos n\theta + B_n\sin n\theta).
$$
Using the final condition, we have
$$
u(a,\theta) = \alpha_0 + \sum_{n = 1}^{\infty}a^{n}(A_n\cos n\theta + B_n\sin n\theta) = \begin{cases}
1, & \frac{\pi}{2} - \epsilon < \theta < \frac{\pi}{2} + \epsilon\\
0, & \text{otherwise}
\end{cases}
$$
Correct?
$$
A_na^n\int_{-\pi}^{\pi}\cos^2 n\theta d\theta = \left[\int_{-\pi}^{\frac{\pi}{2}-\epsilon}0\cos n\theta d\theta + \int_{\frac{\pi}{2}-\epsilon}^{\frac{\pi}{2}+\epsilon}\cos n\theta d\theta + \int_{\frac{\pi}{2}+\epsilon}^{\pi}0\cos n\theta d\theta\right]
$$

\begin{alignat*}{3}
A_n & = & \frac{1}{\pi a^n}\left[\int_{-\pi}^{\frac{\pi}{2} - \epsilon}0\cos n\theta d\theta + \int_{\frac{\pi}{2} - \epsilon}^{\frac{\pi}{2} + \epsilon}\cos n\theta d\theta + \int_{\frac{\pi}{2} + \epsilon}^{\pi}0\cos n\theta d\theta\right]\\
& = & \frac{1}{\pi a^n}\int_{\frac{\pi}{2} - \epsilon}^{\frac{\pi}{2} + \epsilon}\cos n\theta d\theta\\
& = & \left.\frac{1}{n\pi a^n}\sin n\theta\right|_{\frac{\pi}{2} - \epsilon}^{\frac{\pi}{2} + \epsilon}\\
& = & \frac{1}{n\pi a^n}\left[\sin n\left(\frac{\pi}{2} + \epsilon\right) - \sin n\left(\frac{\pi}{2} - \epsilon\right)\right]
\end{alignat*}

Can I get $A_n$ in a more usable form?
Here is what I got for $B_n$ and $A_0$.

\begin{alignat*}{3}
B_n & = & \frac{1}{\pi a^n}\left[\int_{-\pi}^{\frac{\pi}{2} - \epsilon}0\sin n\theta d\theta + \int_{\frac{\pi}{2} - \epsilon}^{\frac{\pi}{2} + \epsilon}\sin n\theta d\theta + \int_{\frac{\pi}{2} + \epsilon}^{\pi}0\sin n\theta d\theta\right]\\
& = & \frac{1}{\pi a^n}\int_{\frac{\pi}{2} - \epsilon}^{\frac{\pi}{2} + \epsilon}\sin n\theta d\theta\\
& = & -\left.\frac{1}{n\pi a^n}\cos n\theta\right|_{\frac{\pi}{2} - \epsilon}^{\frac{\pi}{2} + \epsilon}\\
& = & -\frac{1}{n\pi a^n}\left[\cos n\left(\frac{\pi}{2} + \epsilon\right) - \cos n\left(\frac{\pi}{2} - \epsilon\right)\right]
\end{alignat*}
\begin{alignat*}{3}
A_0 & = & \frac{1}{\pi}\left[\int_{-\pi}^{\frac{\pi}{2} - \epsilon}0 + \int_{\frac{\pi}{2} - \epsilon}^{\frac{\pi}{2} + \epsilon}d\theta + \int_{\frac{\pi}{2} + \epsilon}^{\pi}0d\theta\right]\\
& = & \frac{1}{\pi}\int_{\frac{\pi}{2} - \epsilon}^{\frac{\pi}{2} + \epsilon}d\theta\\
& = & \left.\frac{\theta}{\pi}\right|_{\frac{\pi}{2} - \epsilon}^{\frac{\pi}{2} + \epsilon}\\
& = & \frac{1}{\pi}\left[\frac{\pi}{2} + \epsilon - \frac{\pi}{2} + \epsilon\right]\\
& = & \frac{2\epsilon}{\pi}
\end{alignat*}
 
Last edited:

Similar threads

Replies
3
Views
3K
  • · Replies 33 ·
2
Replies
33
Views
5K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 36 ·
2
Replies
36
Views
5K