Laplace equation polar coordinates

Click For Summary
SUMMARY

The discussion focuses on solving Laplace's equation in polar coordinates for a circular disk of radius a, specifically under a piecewise boundary condition. The boundary condition specifies that the potential is 1 in a small angular region around θ = π/2 and 0 elsewhere. The solution is approached using separation of variables, leading to expressions for the angular and radial components, Θ(θ) and R(r), respectively. The coefficients A_n and B_n are derived through integration, with A_0 calculated as 2ε/π, providing a complete framework for solving the problem.

PREREQUISITES
  • Understanding of Laplace's equation in polar coordinates
  • Familiarity with separation of variables technique
  • Knowledge of Fourier series for solving boundary value problems
  • Basic calculus for evaluating integrals
NEXT STEPS
  • Study the method of separation of variables in more detail
  • Learn about Fourier series and their application in solving partial differential equations
  • Explore numerical methods for approximating solutions to Laplace's equation
  • Investigate the physical implications of electric potential distributions in conductive materials
USEFUL FOR

Mathematicians, physicists, and engineering students focusing on potential theory, boundary value problems, and those interested in the application of Laplace's equation in electrostatics.

Dustinsfl
Messages
2,217
Reaction score
5
I have never solved an equation in polar form. I am not sure with how to start.

Solve Laplace's equation on a circular disk of radius a subject to the piecewise boundary condition
$$
u(a,\theta) = \begin{cases}
1, & \frac{\pi}{2} - \epsilon < \theta < \frac{\pi}{2} + \epsilon\\
0, & \text{otherwise}
\end{cases}
$$
where $\epsilon \ll 1$. Physically, this would reflect the electric potential distribution on a conducting disk whose edge is almost completely grounded except a small portion of angular extent $\Delta\theta = 2\epsilon$ around the location $\theta = \frac{\pi}{2}$. Obtain the solution to this problem and plot the solution for the case of $a = 1$ and $\epsilon = 0.05$.
 
Physics news on Phys.org
dwsmith said:
I have never solved an equation in polar form. I am not sure with how to start.

Solve Laplace's equation on a circular disk of radius a subject to the piecewise boundary condition
$$
u(a,\theta) = \begin{cases}
1, & \frac{\pi}{2} - \epsilon < \theta < \frac{\pi}{2} + \epsilon\\
0, & \text{otherwise}
\end{cases}
$$
where $\epsilon \ll 1$. Physically, this would reflect the electric potential distribution on a conducting disk whose edge is almost completely grounded except a small portion of angular extent $\Delta\theta = 2\epsilon$ around the location $\theta = \frac{\pi}{2}$. Obtain the solution to this problem and plot the solution for the case of $a = 1$ and $\epsilon = 0.05$.

The method of solving a Laplace's equation in polar coordinates can be found >>here<< (Refer Example 3).
 
Sudharaka said:
The method of solving a Laplace's equation in polar coordinates can be found >>here<< (Refer Example 3).

I figured out how to solve in polar. However, this problem is still posing a lot of difficulty.
 
By separation of variables, we have
$$
\begin{cases}
\Theta(\theta) = A\cos\lambda\theta + B\sin\lambda\theta\\
R(r) = r^{\pm\lambda}
\end{cases}
$$
So how do I use the conditions now?
 
So I have that
$$
u(r,\theta) = \alpha_0 + \sum_{n = 1}^{\infty}r^{n}(A_n\cos n\theta + B_n\sin n\theta).
$$
Using the final condition, we have
$$
u(a,\theta) = \alpha_0 + \sum_{n = 1}^{\infty}a^{n}(A_n\cos n\theta + B_n\sin n\theta) = \begin{cases}
1, & \frac{\pi}{2} - \epsilon < \theta < \frac{\pi}{2} + \epsilon\\
0, & \text{otherwise}
\end{cases}
$$
Correct?
$$
A_na^n\int_{-\pi}^{\pi}\cos^2 n\theta d\theta = \left[\int_{-\pi}^{\frac{\pi}{2}-\epsilon}0\cos n\theta d\theta + \int_{\frac{\pi}{2}-\epsilon}^{\frac{\pi}{2}+\epsilon}\cos n\theta d\theta + \int_{\frac{\pi}{2}+\epsilon}^{\pi}0\cos n\theta d\theta\right]
$$
 
Last edited:
dwsmith said:
So I have that
$$
u(r,\theta) = \alpha_0 + \sum_{n = 1}^{\infty}r^{n}(A_n\cos n\theta + B_n\sin n\theta).
$$
Using the final condition, we have
$$
u(a,\theta) = \alpha_0 + \sum_{n = 1}^{\infty}a^{n}(A_n\cos n\theta + B_n\sin n\theta) = \begin{cases}
1, & \frac{\pi}{2} - \epsilon < \theta < \frac{\pi}{2} + \epsilon\\
0, & \text{otherwise}
\end{cases}
$$
Correct?
$$
A_na^n\int_{-\pi}^{\pi}\cos^2 n\theta d\theta = \left[\int_{-\pi}^{\frac{\pi}{2}-\epsilon}0\cos n\theta d\theta + \int_{\frac{\pi}{2}-\epsilon}^{\frac{\pi}{2}+\epsilon}\cos n\theta d\theta + \int_{\frac{\pi}{2}+\epsilon}^{\pi}0\cos n\theta d\theta\right]
$$

\begin{alignat*}{3}
A_n & = & \frac{1}{\pi a^n}\left[\int_{-\pi}^{\frac{\pi}{2} - \epsilon}0\cos n\theta d\theta + \int_{\frac{\pi}{2} - \epsilon}^{\frac{\pi}{2} + \epsilon}\cos n\theta d\theta + \int_{\frac{\pi}{2} + \epsilon}^{\pi}0\cos n\theta d\theta\right]\\
& = & \frac{1}{\pi a^n}\int_{\frac{\pi}{2} - \epsilon}^{\frac{\pi}{2} + \epsilon}\cos n\theta d\theta\\
& = & \left.\frac{1}{n\pi a^n}\sin n\theta\right|_{\frac{\pi}{2} - \epsilon}^{\frac{\pi}{2} + \epsilon}\\
& = & \frac{1}{n\pi a^n}\left[\sin n\left(\frac{\pi}{2} + \epsilon\right) - \sin n\left(\frac{\pi}{2} - \epsilon\right)\right]
\end{alignat*}

Can I get $A_n$ in a more usable form?
Here is what I got for $B_n$ and $A_0$.

\begin{alignat*}{3}
B_n & = & \frac{1}{\pi a^n}\left[\int_{-\pi}^{\frac{\pi}{2} - \epsilon}0\sin n\theta d\theta + \int_{\frac{\pi}{2} - \epsilon}^{\frac{\pi}{2} + \epsilon}\sin n\theta d\theta + \int_{\frac{\pi}{2} + \epsilon}^{\pi}0\sin n\theta d\theta\right]\\
& = & \frac{1}{\pi a^n}\int_{\frac{\pi}{2} - \epsilon}^{\frac{\pi}{2} + \epsilon}\sin n\theta d\theta\\
& = & -\left.\frac{1}{n\pi a^n}\cos n\theta\right|_{\frac{\pi}{2} - \epsilon}^{\frac{\pi}{2} + \epsilon}\\
& = & -\frac{1}{n\pi a^n}\left[\cos n\left(\frac{\pi}{2} + \epsilon\right) - \cos n\left(\frac{\pi}{2} - \epsilon\right)\right]
\end{alignat*}
\begin{alignat*}{3}
A_0 & = & \frac{1}{\pi}\left[\int_{-\pi}^{\frac{\pi}{2} - \epsilon}0 + \int_{\frac{\pi}{2} - \epsilon}^{\frac{\pi}{2} + \epsilon}d\theta + \int_{\frac{\pi}{2} + \epsilon}^{\pi}0d\theta\right]\\
& = & \frac{1}{\pi}\int_{\frac{\pi}{2} - \epsilon}^{\frac{\pi}{2} + \epsilon}d\theta\\
& = & \left.\frac{\theta}{\pi}\right|_{\frac{\pi}{2} - \epsilon}^{\frac{\pi}{2} + \epsilon}\\
& = & \frac{1}{\pi}\left[\frac{\pi}{2} + \epsilon - \frac{\pi}{2} + \epsilon\right]\\
& = & \frac{2\epsilon}{\pi}
\end{alignat*}
 
Last edited:

Similar threads

Replies
3
Views
3K
  • · Replies 33 ·
2
Replies
33
Views
5K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 36 ·
2
Replies
36
Views
5K