• Support PF! Buy your school textbooks, materials and every day products via PF Here!

Laplace Transform of Heaviside Function

  • Thread starter _N3WTON_
  • Start date
346
3
1. Homework Statement
Determine the Laplace transform of the given function:
[itex] f(t) = sin(t) [/itex] for [itex] 0 <= t < \pi [/itex] and [itex] f(t) = 0 [/itex] for [itex] \pi <= t [/itex]

2. Homework Equations


3. The Attempt at a Solution
Ok, I've been having some trouble figuring out how I should write the above branched function (sorry for the format, I'm not sure how to write branched function in latex). This is what I have the function as right now:
[itex] f(t) = (1-\sin t)u_{\pi}(t) [/itex]. I can visualize what the graph of the above function should look like, but I sometimes have trouble actually writing it. I was hoping somebody could confirm whether or not this is correct, once I have the function figured out I suspect the rest of the problem probably won't be too difficult.
 

Zondrina

Homework Helper
2,063
136
The question is merely asking you to compute ##L\{f(t)\}## for ##0 \leq t \leq \pi##.

The reason being, the other part of the integral converges to zero. That is:

$$\int_{\pi}^{\infty} f(t) e^{-st} \space dt = \int_{\pi}^{\infty} 0 \space dt = 0$$
 

Ray Vickson

Science Advisor
Homework Helper
Dearly Missed
10,705
1,720
1. Homework Statement
Determine the Laplace transform of the given function:
[itex] f(t) = sin(t) [/itex] for [itex] 0 <= t < \pi [/itex] and [itex] f(t) = 0 [/itex] for [itex] \pi <= t [/itex]

2. Homework Equations


3. The Attempt at a Solution
Ok, I've been having some trouble figuring out how I should write the above branched function (sorry for the format, I'm not sure how to write branched function in latex). This is what I have the function as right now:
[itex] f(t) = (1-\sin t)u_{\pi}(t) [/itex]. I can visualize what the graph of the above function should look like, but I sometimes have trouble actually writing it. I was hoping somebody could confirm whether or not this is correct, once I have the function figured out I suspect the rest of the problem probably won't be too difficult.
By trying to exploit fancy methods involving the Heaviside function, etc., you are only going to make a lot of unnecessary work for yourself. It is much more direct to just use the basic definition of the Laplace transform and apply it to your function.

Anyway, in answer to your question: NO, the formula above is incorrect. You can see that for yourself, just by asking yourself what you get for ## 0 < t < \pi ## and for ## t > \pi ##.
 
346
3
By trying to exploit fancy methods involving the Heaviside function, etc., you are only going to make a lot of unnecessary work for yourself. It is much more direct to just use the basic definition of the Laplace transform and apply it to your function.
.
I understand, but my issue is I am having trouble seeing what the function is, therefore I do not know what I am taking the Laplace transform of. The reason I arrived at my first solution was because the branched function [itex] f(t) = 1[/itex] for t<c and [itex] f(t) = 0 [/itex] for t>=c is [itex] 1 - u_{c}(t) [/itex] yes? I tried doing something similar with the above problem. I was thinking perhaps [itex] f(t) = sin(t) - u_{\pi}(t) [/itex]?
 

Ray Vickson

Science Advisor
Homework Helper
Dearly Missed
10,705
1,720
I understand, but my issue is I am having trouble seeing what the function is, therefore I do not know what I am taking the Laplace transform of. The reason I arrived at my first solution was because the branched function [itex] f(t) = 1[/itex] for t<c and [itex] f(t) = 0 [/itex] for t>=c is [itex] 1 - u_{c}(t) [/itex] yes? I tried doing something similar with the above problem. I was thinking perhaps [itex] f(t) = sin(t) - u_{\pi}(t) [/itex]?
You said ##f(t) = \sin(t)## if ##0 \leq t < \pi##, and ## f(t) = 0## if ##t \geq \pi##. I honestly cannot see what possible problem you can have interpreting and plotting that. You are told exactly what is ##f(t)## for ## t \in [0,\pi) ## and you are told exactly what is ##f(t)## for ##t \geq \pi##.

Of course, when taking the LT we ignore the part ##t < 0##; alternatively, you could take ##f(t) = 0## for ##t < 0##.
 
346
3
You said ##f(t) = \sin(t)## if ##0 \leq t < \pi##, and ## f(t) = 0## if ##t \geq \pi##. I honestly cannot see what possible problem you can have interpreting and plotting that. You are told exactly what is ##f(t)## for ## t \in [0,\pi) ## and you are told exactly what is ##f(t)## for ##t \geq \pi##.

Of course, when taking the LT we ignore the part ##t < 0##; alternatively, you could take ##f(t) = 0## for ##t < 0##.
I'm not having a problem interpreting/plotting the function, what I am having a problem with is writing it using the unit step function...
 
346
3
Edit: I see now how stupid my questions have been, sorry :/ lol
 
Last edited:
346
3
Anyhow, here is the solution I have so far:
[itex] \mathcal{L}(f(t))= \int_{0}^{\infty} e^{-st}f(t)\,dt [/itex]
[itex] = \int_{0}^{\pi} e^{-st}\sin t\,dt + \int_{\pi}^{\infty} e^{-st}(0)\,dt[/itex]
[itex] \frac{e^{-st}}{s^{2}+1}[-s\sin t + \cos t]\bigr|_{0}^{\pi} [/itex]
[itex] (\frac{e^{-st}}{s^{2}+1}[-s\sin \pi + \cos \pi]) - (\frac{1}{s^{2}+1}[-s \sin 0 + \cos 0]) [/itex]
[itex] = \frac{e^{-\pi s}+1}{s^{2}+1} [/itex]
 
Last edited:

Ray Vickson

Science Advisor
Homework Helper
Dearly Missed
10,705
1,720
Anyhow, here is the solution I have so far:
[itex] \mathcal{L}(f(t))= \int_{0}^{\infty} e^{-st}f(t)\,dt [/itex]
[itex] = \int_{0}^{\pi} e^{-st}\sin t\,dt + \int_{\pi}^{\infty} e^{-st}(0)\,dt[/itex]
[itex] \frac{e^{-st}}{s^{2}+1}[-s\sin t + \cos t]\bigr|_{0}^{\pi} [/itex]
[itex] (\frac{e^{-st}}{s^{2}+1}[-s\sin \pi + \cos \pi]) - (\frac{1}{s^{2}+1}[-s \sin 0 + \cos 0]) [/itex]
[itex] = \frac{e^{-\pi s}+1}{s^{2}+1} [/itex]
I have not checked all the details, but it looks OK at a glance.
 
346
3
I have not checked all the details, but it looks OK at a glance.
great, thanks for the help sorry if I was being difficult earlier, I think I was getting hung up on a topic that didn't really even apply to this specific problem...
 

vela

Staff Emeritus
Science Advisor
Homework Helper
Education Advisor
14,411
1,099
I understand, but my issue is I am having trouble seeing what the function is, therefore I do not know what I am taking the Laplace transform of. The reason I arrived at my first solution was because the branched function [itex] f(t) = 1[/itex] for t<c and [itex] f(t) = 0 [/itex] for t>=c is [itex] 1 - u_{c}(t) [/itex] yes? I tried doing something similar with the above problem. I was thinking perhaps [itex] f(t) = sin(t) - u_{\pi}(t) [/itex]?
If you want to do it this way, you want to multiply ##\sin t## by ##[1-u_\pi(t)]##. The factor ##[1-u_\pi(t)]## picks off only the first half-cycle of ##\sin t##.
 
346
3
If you want to do it this way, you want to multiply ##\sin t## by ##[1-u_\pi(t)]##. The factor ##[1-u_\pi(t)]## picks off only the first half-cycle of ##\sin t##.
Thank you, I originally wanted to do it that way just because I wanted some practice writing branched functions in terms of the unit step function..
 

Want to reply to this thread?

"Laplace Transform of Heaviside Function" You must log in or register to reply here.

Related Threads for: Laplace Transform of Heaviside Function

Replies
3
Views
2K
Replies
3
Views
2K
Replies
1
Views
3K
Replies
3
Views
5K
Replies
4
Views
5K
  • Posted
Replies
13
Views
2K
Replies
1
Views
520
  • Posted
Replies
1
Views
3K

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving
Top