I mentioned several people earlier who have taken part in very interesting research recently but who were not on the list of plenary speakers. Now that the titles and abstracts for the PARALLEL SESSION talks are posted online we can see what those folks are going to be talking about too.
marcus said:
BTW I noticed that Suzanne Lanéry, who did that interesting series of papers with Thomas Thiemann, is one those who have already registered--so one can count on presentation of some of the recent Thiemann et al work in the parallel sessions.
... Gofreddo Chirco (of the CHRR) is another of those listed, who will most likely be presenting results in parallel session. Francesca Vidotto as well. I'm interested in that "compact phase space" result which comes out of incorporating the cosmological constant in simplicial QG.
I have time to mention only a few of the parallel session talks. I have highlighted ones by Haggard, Riello, Vidotto, and Geiller, about recent research discussed here at PF.
Parallel Session: Foundations of Canonical LQG
Monday, 16:30 - 18:00, Room: Lecture Hall
Chair: Alok Laddha
...
Fractal Coherent States
17:00 - 17:30, Suzanne Lanéry (FAU Erlangen, Germany)
Motivated by obstructions to the construction of semi-classical states on the holonomy-flux algebra, i will discuss how a discrete subalgebra can be extracted while preserving universality and diffeomorphism invariance. This paves the way for the construction of states whose semi-classicality is enforced step by step, starting from collective, macroscopic degrees of freedom and going down progressively toward smaller and smaller scales.
=============
Parallel Session: Foundations of Covariant LQG (Spin Foams)
Tuesday, 14:30 - 16:00, Room: Lecture Hall
Chair: Muxin Han
...
Encoding Curved Tetrahedra in Face Holonomies
15:30 - 16:00, Hal Haggard (Bard College, USA)
I will present a generalization of Minkowski’s classic theorem on the reconstruction of tetrahedra from algebraic data to homogeneously curved spaces. Euclidean notions such as the normal vector to a face are replaced by Levi-Civita holonomies around each of the tetrahedron’s faces. This new approach allows the reconstruction of both spherical and hyperbolic tetrahedra within a unified framework. Several interesting mathematical structures arise in setting up a phase space for these curved tetrahedra such as group-valued moment maps and quasi-Poisson spaces. Curved tetrahedra also provide a natural starting point for thinking about discrete and quantum gravity in spacetimes with a cosmological constant.
===============
Parallel Session: Foundations of Covariant LQG (Spin Foams)
Tuesday, 16:30 - 18:00, Room: Lecture Hall
Chair: Muxin Han
From a curved-space reconstruction theorem to a 4d Spinfoam model with a Cosmological Constant
16:30 - 17:00, Aldo Riello (Perimeter Institute, Canada)
I will discuss the first steps towards a definition of a spinfoam model for 4d gravity with a cosmological constant, via complex Chern-Simons theory with defects. The proposal hinges on a reconstruction theorem assessing the correspondence between a class of flat connections on a S3 graph complement (related to the 4-simplex 1-skeleton) and the geometries of a constant-curvature Lorentzian 4-simplex. The main result consists in showing that in the semiclassical approximation of the vertex amplitude the Regge action of simplicial general relativity correctly appears. This construction borrows ingredients from the EPRL/FK model and adapts them to the curved case. Time allowing I will also comment on the phase space structure of the boundary states of the model.
Compactification of LQG phase space
17:00 - 17:30, Francesca Vidotto (Radboud University Nijmegen, Netehrlands)
In order to introduce the cosmological constant in a simplicial geometry, simplex faces should be taken of constant curvature. This yields a compactification of the phase space and the finiteness of the Hilbert space for each link. Not only the intrinsic, but also the extrinsic geometry turns out to be discrete, pointing to discreetness of time, in addition to space.
=================
Parallel Session: Homogeneous and Hybrid Loop Quantum Cosmology (LQC)
Tuesday, 16:30 - 18:00, Room: Seminar Room 4
Chair: Edward Wilson-Ewing
LQC, Non-Gaussianity and CMB anomalies
16:30 - 17:00, Ivan Agullo (LSU, USA)
This talk will summarize the prediction of LQC for the spectrum of Non-Gaussianity and its role as a potential source for the power asymmetry observed at large angular scales in the CMB
==================
Parallel Session: Foundations of Covariant LQG (Spin Foams)
Thursday, 14:30 - 16:00, Room: Seminar Room 5
Chair: Benjamin Bahr
The area-law sector of loop quantum gravity
14:30 - 15:00, Eugenio Bianchi (Penn State, USA)
In this talk I present a concrete realization of the conjecture that semiclassical states in quantum gravity satisfy an area law. In loop quantum gravity the entanglement entropy of a random spin-network state scales linearly with the volume of a region of space. I describe a class of spin-network states that are fully characterized by the expectation value and the 2-point correlation function of geometric observables. Such states are semiclassical, have non-vanishing graviton-graviton correlations, and satisfy the area law. The framework extends previous results about the black hole horizon entropy to all regions of space.
=================
Parallel Session: Foundations of Canonical LQG
Thursday, 14:30 - 16:00, Room: Lecture Hall
Chair: Norbert Bodendorfer
...
Typicality and local thermalisation in spin networks
15:30 - 16:00, Goffredo Chirco (CPT - AMU, France)
We investigate the notion of quantum typicality in spin networks, by applying the general approach proposed by Popescu, Short and Winter in 2006, in the context of LQG. In particular, we focus on a basic spin network building block consisting in a N-valent SU(2) intertwiner with fixed total spin, the equivalent of a space of convex polyhedra with N face and fixed total boundary area at the classical level. On the fixed-area subspace of the intertwiner, we study the reduced state associated to a small region of the boundary surface.
By exploiting the "concentration of measure phenomenon", we show how the distribution for such a state is highly peaked around the "thermal state" for almost all pure states of the global intertwiner. We obtain a Gibbs state written in terms of the area preserving generator of the U(N) group, the area having the role played by the energy in the standard canonical picture. Local thermalisation arises as the result of the degree of correlations between local state and environment.
We study the temperature of the local surface patch state and we confront the specific structure of correlations of our result with the previous derivations of a single link thermal state present in the literature.
==================
Parallel Session: Foundations of Covariant LQG (Spin Foams)
Friday, 16:30 - 18:00, Room: Lecture Hall
Chair: Wolfgang Wieland
Graviton propagator of the "proper" vertex
16:30 - 17:00, Atousa Chaharsough Shirazi (Florida Atlantic University, USA)
The “proper” spin-foam vertex amplitude was obtained from the EPRL vertex by projecting out all but a single gravitational sector, in order to enable correct semi-classical behavior. We calculated the gravitational two-point function predicted by the proper spin-foam vertex to lowest order in the vertex expansion. We find the same answer as in the EPRL case, so that the theory is consistent with the predictions of linearized gravity in the regime of small curvature.
Proper Vertex asymptotics and Graviton Propagator
17:00 - 17:30, Ilya Vilensky (Florida Atlantic University, US)
The EPRL vertex amplitude provides a consistent formulation of dynamics of loop quantum gravity states. However, its semi-classical limit does not exactly match classical Regge calculus. We present a modification of the EPRL amplitude - the proper vertex amplitude - that has the correct semi-classical limit. We use the proper vertex amplitude to calculate graviton propagator and find that in semi-classical limit it agrees with the result from Lorentzian Regge calculus.
====================
Parallel Session: Group Field Theory and Tensor Models
Friday, 16:30 - 18:00, Room: Seminar Room 4
Chair: Aristide Baratin
A new representation for loop quantum gravity
16:30 - 17:00, Marc Geiller (ICG Penn State, USA)
One of the key results of loop quantum gravity is the existence of a diffeomorphism-invariant representation of the holonomy-flux algebra of observables, and the construction of a continuum inductive limit Hilbert space. After briefly recalling the properties and the role played by the so-called Ashtekar-Lewandowski vacuum state in this construction, I will describe how a dual formulation can be obtained by trading the roles of the holonomies and the fluxes. This dual representation is built upon a vacuum based on states of topological BF theory, and therefore cast canonical loop quantum gravity in a formulation closer to the spirit of spin foam models. Furthermore, this new vacuum allows for the construction of a continuum limit Hilbert space carrying a (unitarily inequivalent) representation of the holonomy-flux algebra, and gives a new perspective on the derivation of quantum geometry and on the extraction of physics from the theory.
=====================