MHB Least upper bound - greatest lower bound duality

OhMyMarkov
Messages
81
Reaction score
0
Hello everyone!

There's a point I didn't get in Rudin's theorem 1.11 that says:

Suppose S is an ordered set with the LUB property, and B $\subset$ S, B is not empty and B is bounded below. Let L be the set of lower bounds of B. Then a = sup L exists in S, and a - inf B. In particular inf B exists in S.Now the proof states that L is not empty (which is fine by me) and bounded above (fine by me too), hence "our hypothesis about S implies therefore that L has a supremum in S;"

Who said that L $\subset$ S so we can make this strong conclusion?! (Crying)(Crying)

Thanks!
 
Physics news on Phys.org
OhMyMarkov said:
Hello everyone!

There's a point I didn't get in Rudin's theorem 1.11 that says:

Suppose S is an ordered set with the LUB property, and B $\subset$ S, B is not empty and B is bounded below. Let L be the set of lower bounds of B. Then a = sup L exists in S, and a - inf B. In particular inf B exists in S.Now the proof states that L is not empty (which is fine by me) and bounded above (fine by me too), hence "our hypothesis about S implies therefore that L has a supremum in S;"

Who said that L $\subset$ S so we can make this strong conclusion?! (Crying)(Crying)

Thanks!
When we say that $B$ is bounded below, I think its implicit that we mean "B is bounded below in S", that is, in other words, "there is an element in S which is a lower bound to B". For otherwise it would make no sense. We have no idea what is outside S. No order relation is defined which compares elements outside S with elements in S. This is a completely abstract setting. Similarly when we say "Let L be the set of all lower bounds of B", (I think) we mean "Let L be the set of all the lower bounds of B which are in S".
It automatically follows that $L\subseteq S$.
 
I posted this question on math-stackexchange but apparently I asked something stupid and I was downvoted. I still don't have an answer to my question so I hope someone in here can help me or at least explain me why I am asking something stupid. I started studying Complex Analysis and came upon the following theorem which is a direct consequence of the Cauchy-Goursat theorem: Let ##f:D\to\mathbb{C}## be an anlytic function over a simply connected region ##D##. If ##a## and ##z## are part of...