Legendre polynomials and Bessel function of the first kind

Rulonegger
Messages
14
Reaction score
0

Homework Statement


Prove that \sum_{n=0}^{\infty}{\frac{r^n}{n!}P_{n}(\cos{\theta})}=e^{r\cos{\theta}}J_{0}(r\sin{\theta}) where P_{n}(x) is the n-th legendre polynomial and J_{0}(x) is the first kind Bessel function of order zero.

Homework Equations


P_{n}(\cos{\theta})=\frac{1}{2^{2n}}\sum_{k=0}^{n}{\frac{(2n-2k)!(2k)!}{(k!)^2[(n-k)!]^2}e^{i(2k-n)\theta}}
J_{\nu}(x)=\sum_{s=0}^{\infty}{\frac{(-1)^s}{s!(\nu+s)!}\left(\frac{x}{2}\right)^{\nu+2s}}
\left(\sum_{n=0}^{\infty}{a_n}\right)\cdot\left(\sum_{n=0}^{\infty}{b_n}\right)=\sum_{n=0}^{\infty}{\sum_{k=0}^{n}{a_{n-k}b_k}}

The Attempt at a Solution


Using that e^{r\cos{\theta}}=\sum_{n=0}^{\infty}{\frac{(r\cos{\theta})^{n}}{n!}}
I get e^{r\cos{\theta}}J_{0}(r\sin{\theta})=\sum_{n=0}^{\infty}{\frac{(r\cos{\theta})^{n}}{n!}}\cdot\sum_{s=0}^{\infty}{\frac{(-1)^s}{(s!)^2}\left(\frac{r\sin{\theta}}{2}\right)^{2s}}=\sum_{n=0}^{∞}{\sum_{k=0}^{n}{\frac{(r\cos{\theta})^{n-2k}}{(n-2k)!}}\frac{(-1)^k}{(k!)^2}\left(\frac{r\sin{\theta}}{2}\right)^{2k}}
\implies e^{r\cos{\theta}}J_{0}(r\sin{\theta})=\sum_{n=0}^{\infty}{\frac{r^n}{n!}\left(\sum_{k=0}^{n}{\frac{n!(-1)^k}{(n-2k)!(k!)^2}\frac{\cos^{n-2k}{\theta}\sin^{2k}{\theta}}{2^{2k}}}\right)}
So I just need to prove that
\frac{1}{2^{2n}}\sum_{k=0}^{n}{\frac{(2n-2k)!(2k)!}{(k!)^2[(n-k)!]^2}e^{i(2k-n)\theta}}=\sum_{k=0}^{n}{\frac{n!(-1)^k}{(n-2k)!(k!)^2}\frac{\cos^{n-2k}{\theta}\sin^{2k}{\theta}}{2^{2k}}}
I've tried to expand the exponential as an infinite sum, or write the sine and cosine functions as exponentials, but I don't get anything, and I seriously doubt the former steps were made without any mistake. Any help would be greatly appreciated!
 
Physics news on Phys.org
Try using some physical arguments. The left hand side is the solution to Laplace's equation considering azimuthal symmetry. So you can assume it is the solution with a given potential on the surface of a sphere. So the left hand side should be also a solution to Laplace's equation, but in cylindrical coordinates.
So these two represent a solution of Laplace's equation in different coordinate systems. So just transform the left to cylindrical and do the math.
Also try using Rodrigues's formula and the integral representation of the Bessel function.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top