Length and time for a given metric

  • Thread starter Thread starter wandering.the.cosmos
  • Start date Start date
  • Tags Tags
    Length Metric Time
wandering.the.cosmos
Messages
21
Reaction score
0
I'm looking for recommendations for a good place that discusses at a basic level what physical length, time, simultaneity, etc. mean, for an arbitrary metric.

Landau does discuss this a bit, but in a way that confuses me -- for example he calls

\sqrt{g_{00}} dx^0

"proper time", but in the SR limit this would just become dt, which isn't proper time, is it? Landau goes on to use this to derive distance in GR

\gamma_{ij} dx^i dx^j = \left( -g_{ij} + \frac{ g_{0i} g_{oj} }{g_{00}} \right) dx^i dx^j

where my indices are spatial -- they run only from 1 to 3.

I'd like to understand where these expressions come from, and more importantly gain a good understanding of what length and time mean.
 
Physics news on Phys.org
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
Thread 'Dirac's integral for the energy-momentum of the gravitational field'
See Dirac's brief treatment of the energy-momentum pseudo-tensor in the attached picture. Dirac is presumably integrating eq. (31.2) over the 4D "hypercylinder" defined by ##T_1 \le x^0 \le T_2## and ##\mathbf{|x|} \le R##, where ##R## is sufficiently large to include all the matter-energy fields in the system. Then \begin{align} 0 &= \int_V \left[ ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g}\, \right]_{,\nu} d^4 x = \int_{\partial V} ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g} \, dS_\nu \nonumber\\ &= \left(...
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Back
Top