Lengths of three segments of a triangle

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Triangle
Click For Summary

Discussion Overview

The discussion revolves around the properties of segment lengths in triangles, specifically examining the conditions under which the reciprocals of the sums of certain segment lengths also form a triangle. The focus is on theoretical reasoning related to triangle inequalities.

Discussion Character

  • Exploratory, Technical explanation

Main Points Raised

  • Some participants propose that if $x,\,y,\,z$ are lengths of three segments that can form a triangle, then the segments $\dfrac{1}{x+z},\,\dfrac{1}{y+z},\,\dfrac{1}{x+y}$ should also satisfy the triangle inequality.
  • Multiple participants reiterate the same proposition without introducing new arguments or variations in reasoning.
  • One participant expresses appreciation for another's contribution, indicating a supportive atmosphere but not necessarily advancing the argument.
  • Another participant shares an alternative solution that mirrors the previous approach, suggesting a shared understanding of the problem but not introducing differing viewpoints.

Areas of Agreement / Disagreement

There appears to be a lack of disagreement on the initial proposition, but the discussion does not explore competing views or alternative methods in depth, leaving the overall resolution of the problem unresolved.

Contextual Notes

The discussion does not address potential limitations or assumptions inherent in the triangle inequality or the specific conditions under which the segments are defined.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
If $x,\,y,\,z$ are lengths of three segments which can form a triangle, show that the same is true for $\dfrac{1}{x+z},\,\dfrac{1}{y+z},\,\dfrac{1}{x+y}$.
 
Mathematics news on Phys.org
anemone said:
If $x,\,y,\,z$ are lengths of three segments which can form a triangle, show that the same is true for $\dfrac{1}{x+z},\,\dfrac{1}{y+z},\,\dfrac{1}{x+y}$.

we need to show that for arbritary sides of length x,y z
$\dfrac{1}{x+z} + \dfrac{1}{y+z}\gt \dfrac{1}{x+y}$
or $(y+z)(x+y) + (x+z)(x+y) \ge (x+z)(x+z)$
or simlifying
$x^2+y^2 + xy + yz + xz \ge z^2$

now
$x^2+y^2 + xy + yz + xz = z(x+y) + x^2+y^2 + xy$
$ \gt z(x+y) $
$\gt z^2$ as $x+y \gt z$

hence proved
 
kaliprasad said:
we need to show that for arbritary sides of length x,y z
$\dfrac{1}{x+z} + \dfrac{1}{y+z}\gt \dfrac{1}{x+y}$
or $(y+z)(x+y) + (x+z)(x+y) \ge (x+z)(x+z)$
or simlifying
$x^2+y^2 + xy + yz + xz \ge z^2$

now
$x^2+y^2 + xy + yz + xz = z(x+y) + x^2+y^2 + xy$
$ \gt z(x+y) $
$\gt z^2$ as $x+y \gt z$

hence proved

Very well done, kaliprasad! :cool: And thanks for participating!
 
Here is another solution of other that I want to share with MHB:

WLOG we can assume that $z\ge y \ge x$ so that $\dfrac{1}{x+y}\ge \dfrac{1}{z+x}\ge\dfrac{1}{y+z}$ and now, it remains to prove that $\dfrac{1}{y+z}+\dfrac{1}{z+x}>\dfrac{1}{x+y}$.

We have

$\dfrac{1}{y+z}+\dfrac{1}{z+x}-\dfrac{1}{x+y}=\dfrac{x^2+xy+y^2+z(x+y-z)}{(y+z)(z+x)(x+y)}>0$ since $x+y>z$ and the result follows.
Note that this is an identical approach to kaliprasad's, but written in a slightly different way.
 
Last edited:
anemone said:
Here is another solution of other that I want to share with MHB:

WLOG we can assume that $z\ge y \ge z$ so that $\dfrac{1}{x+y}\ge \dfrac{1}{z+x}\ge\dfrac{1}{y+z}$ and now, it remains to prove that $\dfrac{1}{y+z}+\dfrac{1}{z+x}>\dfrac{1}{x+y}$.

We have

$\dfrac{1}{y+z}+\dfrac{1}{z+x}-\dfrac{1}{x+y}=\dfrac{x^2+xy+y^2+z(x+y-z)}{(y+z)(z+x)(x+y)}>0$ since $x+y>z$ and the result follows.
Note that this is an identical approach to kaliprasad's, but written in a slightly different way.
There is a typo error in WLOG iline,
it should be $z\ge y \ge x $
Secondly we do not need WLOG line as
$x+y-z \gt 0$ for any x,y,z sides of the triangle
 
Last edited:

Similar threads

Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
4
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K