MHB Let L1 be the line through P and Q

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Line
Click For Summary
The discussion focuses on defining the line \( L_1 \) that passes through points \( P(2,-1,5) \) and \( Q(3,-3,8) \). It establishes that the vector \( \overrightarrow{PQ} \) is calculated as \( \pmatrix{1\\-2\\3} \) by subtracting the coordinates of \( P \) from \( Q \). The line can be represented using the equation \( r = \pmatrix{3\\-3\\8} + s \pmatrix{1\\-2\\3} \), indicating that it starts at point \( Q \) and extends in the direction of \( \overrightarrow{PQ} \). Participants clarify the relationship between vectors and lines, emphasizing that lines are infinite in magnitude but defined by direction and position. The discussion concludes with an understanding of how to represent the line using both points and direction vectors.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Consider the points $P(2,-1,5)$ and $Q(3,-3,8)$, let $L_1$ be the line trough $P$ and $Q$

(a) Show that $\overrightarrow{PQ}=\pmatrix{ 1\cr -2\cr 3\cr}$

$\overrightarrow{PQ}=\pmatrix{3\cr -3\cr 8\cr}-\pmatrix{2\cr -1\cr 5\cr}$

(b) The line $L_1$ may be represented by $r=\pmatrix{3\cr -3\cr 8\cr}+s\pmatrix{1\cr -2\cr 3\cr}$

i don't know this notation but it looks like $r=Q+\overrightarrow{PQ}$ so we are taking a point and adding a vector to it?

more ? to come on this...
 
Mathematics news on Phys.org
Re: let L1 be the line throught P and Q

karush said:
Consider the points $P(2,-1,5)$ and $Q(3,-3,8)$, let $L_1$ be the line trough $P$ and $Q$

(a) Show that $\overrightarrow{PQ}=\pmatrix{ 1\cr -2\cr 3\cr}$

$\overrightarrow{PQ}=\pmatrix{3\cr -3\cr 8\cr}-\pmatrix{2\cr -1\cr 5\cr}$

(b) The line $L_1$ may be represented by $r=\pmatrix{3\cr -3\cr 8\cr}+s\pmatrix{1\cr -2\cr 3\cr}$

i don't know this notation but it looks like $r=Q+\overrightarrow{PQ}$ so we are taking a point and adding a vector to it?

more ? to come on this...

$r(s)=Q+s\overrightarrow{PQ}$
 
Re: let L1 be the line throught P and Q

Consider the points $P(2,-1,5)$ and $Q(3,-3,8)$, let $L_1$ be the line trough $P$ and $Q$

(a) Show that $\overrightarrow{PQ}=\pmatrix{ 1\cr -2\cr 3\cr}$

$\overrightarrow{PQ}=\pmatrix{3\cr -3\cr 8\cr}-\pmatrix{2\cr -1\cr 5\cr}$

(b) The line $L_1$ may be represented by $r=\pmatrix{3\cr -3\cr 8\cr}+s\pmatrix{1\cr -2\cr 3\cr}$

which is $r(s)=\pmatrix{3\cr -3\cr 8\cr}+s\pmatrix{1\cr -2\cr 3\cr}$

above is from OP
-------------------------------------------------------------------------------
(i) What information does the vector $\pmatrix{3\cr -3\cr 8\cr}$ give about $L_1$.
my question on this is I thot this was pointQ or can this be also a vector from $0,0,0$.

(i) Write down another vector representation for $L_1$ using $\pmatrix{3\cr -3\cr 8\cr}$
all I could come up with was $r(s)=\pmatrix{2\cr -1\cr 5\cr}-s\pmatrix{3\cr -3\cr 8\cr}=L_1$ but since $L_1$ is a line direction is not considered.
 
Re: let L1 be the line throught P and Q

karush said:
Consider the points $P(2,-1,5)$ and $Q(3,-3,8)$, let $L_1$ be the line trough $P$ and $Q$

(a) Show that $\overrightarrow{PQ}=\pmatrix{ 1\cr -2\cr 3\cr}$

$\overrightarrow{PQ}=\pmatrix{3\cr -3\cr 8\cr}-\pmatrix{2\cr -1\cr 5\cr}$

(b) The line $L_1$ may be represented by $r=\pmatrix{3\cr -3\cr 8\cr}+s\pmatrix{1\cr -2\cr 3\cr}$

i don't know this notation but it looks like $r=Q+\overrightarrow{PQ}$ so we are taking a point and adding a vector to it?

more ? to come on this...

It helps if you consider the relationship between vectors and lines. Vectors are defined by their direction and their magnitude. Lines are defined by their direction, their position, and are of infinite magnitude. That means that a line is really an infinitely long vector that is positioned somewhere.

If we know that the line passes through the points \displaystyle \begin{align*} P = (2, -1, 5) \end{align*} and \displaystyle \begin{align*} Q = (3, -3, 8) \end{align*}, then to get the equation of a line going through those points, we need a vector which goes in the same direction, so \displaystyle \begin{align*} \overrightarrow{PQ} = (1, -2, 3) \end{align*}, then you need to make it infinitely long, so multiply by a parameter \displaystyle \begin{align*} s \end{align*} giving \displaystyle \begin{align*} s(1, -2, 3) = (s, -2s, 3s) \end{align*}, and finally we need to position it somewhere, because this vector would be defined to go through the origin. The points that it goes through tells us how much the vector needs to be moved in the direction of each of the axes, so we would add that many to each of the components, so if we move it according to point Q, we get \displaystyle \begin{align*} L_1 = (s + 3, -2s -3, 3s + 8) \end{align*}.
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

Replies
5
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 15 ·
Replies
15
Views
5K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
5K
  • · Replies 2 ·
Replies
2
Views
3K