Let L1 be the line through P and Q

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Line
Click For Summary

Discussion Overview

The discussion revolves around the representation of a line \(L_1\) defined by two points \(P(2,-1,5)\) and \(Q(3,-3,8)\) in three-dimensional space. Participants explore vector notation, the relationship between points and vectors, and how to express the line using these concepts. The scope includes mathematical reasoning and conceptual clarification regarding vector representation of lines.

Discussion Character

  • Mathematical reasoning
  • Conceptual clarification
  • Exploratory

Main Points Raised

  • Some participants note that the vector \(\overrightarrow{PQ} = \pmatrix{1\\-2\\3}\) is derived from the difference between points \(Q\) and \(P\).
  • There is a question about the notation used for the line \(L_1\) and whether it represents a point plus a direction vector.
  • One participant proposes an alternative representation of the line using point \(P\) and the direction vector, suggesting \(r(s) = \pmatrix{2\\-1\\5} - s \pmatrix{3\\-3\\8}\), although they express uncertainty about the directionality of lines.
  • Another participant explains that vectors are defined by direction and magnitude, while lines are infinite in extent, leading to the conclusion that a line can be viewed as an infinitely long vector positioned at a point.
  • There is a discussion about the implications of using point \(Q\) in the line equation and how it relates to the vector representation.

Areas of Agreement / Disagreement

Participants express varying levels of understanding regarding the vector notation and its application to the line representation. There is no consensus on the best way to express the line or the implications of the vector notation, indicating that multiple views remain on the topic.

Contextual Notes

Some participants express uncertainty about the notation and the relationship between points and vectors, highlighting potential limitations in understanding vector representations of lines.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Consider the points $P(2,-1,5)$ and $Q(3,-3,8)$, let $L_1$ be the line trough $P$ and $Q$

(a) Show that $\overrightarrow{PQ}=\pmatrix{ 1\cr -2\cr 3\cr}$

$\overrightarrow{PQ}=\pmatrix{3\cr -3\cr 8\cr}-\pmatrix{2\cr -1\cr 5\cr}$

(b) The line $L_1$ may be represented by $r=\pmatrix{3\cr -3\cr 8\cr}+s\pmatrix{1\cr -2\cr 3\cr}$

i don't know this notation but it looks like $r=Q+\overrightarrow{PQ}$ so we are taking a point and adding a vector to it?

more ? to come on this...
 
Physics news on Phys.org
Re: let L1 be the line through P and Q

karush said:
Consider the points $P(2,-1,5)$ and $Q(3,-3,8)$, let $L_1$ be the line trough $P$ and $Q$

(a) Show that $\overrightarrow{PQ}=\pmatrix{ 1\cr -2\cr 3\cr}$

$\overrightarrow{PQ}=\pmatrix{3\cr -3\cr 8\cr}-\pmatrix{2\cr -1\cr 5\cr}$

(b) The line $L_1$ may be represented by $r=\pmatrix{3\cr -3\cr 8\cr}+s\pmatrix{1\cr -2\cr 3\cr}$

i don't know this notation but it looks like $r=Q+\overrightarrow{PQ}$ so we are taking a point and adding a vector to it?

more ? to come on this...

$r(s)=Q+s\overrightarrow{PQ}$
 
Re: let L1 be the line through P and Q

Consider the points $P(2,-1,5)$ and $Q(3,-3,8)$, let $L_1$ be the line trough $P$ and $Q$

(a) Show that $\overrightarrow{PQ}=\pmatrix{ 1\cr -2\cr 3\cr}$

$\overrightarrow{PQ}=\pmatrix{3\cr -3\cr 8\cr}-\pmatrix{2\cr -1\cr 5\cr}$

(b) The line $L_1$ may be represented by $r=\pmatrix{3\cr -3\cr 8\cr}+s\pmatrix{1\cr -2\cr 3\cr}$

which is $r(s)=\pmatrix{3\cr -3\cr 8\cr}+s\pmatrix{1\cr -2\cr 3\cr}$

above is from OP
-------------------------------------------------------------------------------
(i) What information does the vector $\pmatrix{3\cr -3\cr 8\cr}$ give about $L_1$.
my question on this is I thot this was pointQ or can this be also a vector from $0,0,0$.

(i) Write down another vector representation for $L_1$ using $\pmatrix{3\cr -3\cr 8\cr}$
all I could come up with was $r(s)=\pmatrix{2\cr -1\cr 5\cr}-s\pmatrix{3\cr -3\cr 8\cr}=L_1$ but since $L_1$ is a line direction is not considered.
 
Re: let L1 be the line through P and Q

karush said:
Consider the points $P(2,-1,5)$ and $Q(3,-3,8)$, let $L_1$ be the line trough $P$ and $Q$

(a) Show that $\overrightarrow{PQ}=\pmatrix{ 1\cr -2\cr 3\cr}$

$\overrightarrow{PQ}=\pmatrix{3\cr -3\cr 8\cr}-\pmatrix{2\cr -1\cr 5\cr}$

(b) The line $L_1$ may be represented by $r=\pmatrix{3\cr -3\cr 8\cr}+s\pmatrix{1\cr -2\cr 3\cr}$

i don't know this notation but it looks like $r=Q+\overrightarrow{PQ}$ so we are taking a point and adding a vector to it?

more ? to come on this...

It helps if you consider the relationship between vectors and lines. Vectors are defined by their direction and their magnitude. Lines are defined by their direction, their position, and are of infinite magnitude. That means that a line is really an infinitely long vector that is positioned somewhere.

If we know that the line passes through the points \displaystyle \begin{align*} P = (2, -1, 5) \end{align*} and \displaystyle \begin{align*} Q = (3, -3, 8) \end{align*}, then to get the equation of a line going through those points, we need a vector which goes in the same direction, so \displaystyle \begin{align*} \overrightarrow{PQ} = (1, -2, 3) \end{align*}, then you need to make it infinitely long, so multiply by a parameter \displaystyle \begin{align*} s \end{align*} giving \displaystyle \begin{align*} s(1, -2, 3) = (s, -2s, 3s) \end{align*}, and finally we need to position it somewhere, because this vector would be defined to go through the origin. The points that it goes through tells us how much the vector needs to be moved in the direction of each of the axes, so we would add that many to each of the components, so if we move it according to point Q, we get \displaystyle \begin{align*} L_1 = (s + 3, -2s -3, 3s + 8) \end{align*}.
 

Similar threads

Replies
5
Views
3K
  • · Replies 21 ·
Replies
21
Views
3K
  • · Replies 15 ·
Replies
15
Views
5K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 51 ·
2
Replies
51
Views
6K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K