MHB Let L1 be the line through P and Q

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Line
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Consider the points $P(2,-1,5)$ and $Q(3,-3,8)$, let $L_1$ be the line trough $P$ and $Q$

(a) Show that $\overrightarrow{PQ}=\pmatrix{ 1\cr -2\cr 3\cr}$

$\overrightarrow{PQ}=\pmatrix{3\cr -3\cr 8\cr}-\pmatrix{2\cr -1\cr 5\cr}$

(b) The line $L_1$ may be represented by $r=\pmatrix{3\cr -3\cr 8\cr}+s\pmatrix{1\cr -2\cr 3\cr}$

i don't know this notation but it looks like $r=Q+\overrightarrow{PQ}$ so we are taking a point and adding a vector to it?

more ? to come on this...
 
Mathematics news on Phys.org
Re: let L1 be the line throught P and Q

karush said:
Consider the points $P(2,-1,5)$ and $Q(3,-3,8)$, let $L_1$ be the line trough $P$ and $Q$

(a) Show that $\overrightarrow{PQ}=\pmatrix{ 1\cr -2\cr 3\cr}$

$\overrightarrow{PQ}=\pmatrix{3\cr -3\cr 8\cr}-\pmatrix{2\cr -1\cr 5\cr}$

(b) The line $L_1$ may be represented by $r=\pmatrix{3\cr -3\cr 8\cr}+s\pmatrix{1\cr -2\cr 3\cr}$

i don't know this notation but it looks like $r=Q+\overrightarrow{PQ}$ so we are taking a point and adding a vector to it?

more ? to come on this...

$r(s)=Q+s\overrightarrow{PQ}$
 
Re: let L1 be the line throught P and Q

Consider the points $P(2,-1,5)$ and $Q(3,-3,8)$, let $L_1$ be the line trough $P$ and $Q$

(a) Show that $\overrightarrow{PQ}=\pmatrix{ 1\cr -2\cr 3\cr}$

$\overrightarrow{PQ}=\pmatrix{3\cr -3\cr 8\cr}-\pmatrix{2\cr -1\cr 5\cr}$

(b) The line $L_1$ may be represented by $r=\pmatrix{3\cr -3\cr 8\cr}+s\pmatrix{1\cr -2\cr 3\cr}$

which is $r(s)=\pmatrix{3\cr -3\cr 8\cr}+s\pmatrix{1\cr -2\cr 3\cr}$

above is from OP
-------------------------------------------------------------------------------
(i) What information does the vector $\pmatrix{3\cr -3\cr 8\cr}$ give about $L_1$.
my question on this is I thot this was pointQ or can this be also a vector from $0,0,0$.

(i) Write down another vector representation for $L_1$ using $\pmatrix{3\cr -3\cr 8\cr}$
all I could come up with was $r(s)=\pmatrix{2\cr -1\cr 5\cr}-s\pmatrix{3\cr -3\cr 8\cr}=L_1$ but since $L_1$ is a line direction is not considered.
 
Re: let L1 be the line throught P and Q

karush said:
Consider the points $P(2,-1,5)$ and $Q(3,-3,8)$, let $L_1$ be the line trough $P$ and $Q$

(a) Show that $\overrightarrow{PQ}=\pmatrix{ 1\cr -2\cr 3\cr}$

$\overrightarrow{PQ}=\pmatrix{3\cr -3\cr 8\cr}-\pmatrix{2\cr -1\cr 5\cr}$

(b) The line $L_1$ may be represented by $r=\pmatrix{3\cr -3\cr 8\cr}+s\pmatrix{1\cr -2\cr 3\cr}$

i don't know this notation but it looks like $r=Q+\overrightarrow{PQ}$ so we are taking a point and adding a vector to it?

more ? to come on this...

It helps if you consider the relationship between vectors and lines. Vectors are defined by their direction and their magnitude. Lines are defined by their direction, their position, and are of infinite magnitude. That means that a line is really an infinitely long vector that is positioned somewhere.

If we know that the line passes through the points \displaystyle \begin{align*} P = (2, -1, 5) \end{align*} and \displaystyle \begin{align*} Q = (3, -3, 8) \end{align*}, then to get the equation of a line going through those points, we need a vector which goes in the same direction, so \displaystyle \begin{align*} \overrightarrow{PQ} = (1, -2, 3) \end{align*}, then you need to make it infinitely long, so multiply by a parameter \displaystyle \begin{align*} s \end{align*} giving \displaystyle \begin{align*} s(1, -2, 3) = (s, -2s, 3s) \end{align*}, and finally we need to position it somewhere, because this vector would be defined to go through the origin. The points that it goes through tells us how much the vector needs to be moved in the direction of each of the axes, so we would add that many to each of the components, so if we move it according to point Q, we get \displaystyle \begin{align*} L_1 = (s + 3, -2s -3, 3s + 8) \end{align*}.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
5
Views
3K
Replies
10
Views
2K
Replies
1
Views
2K
Replies
2
Views
1K
Replies
9
Views
5K
Replies
2
Views
3K
Back
Top