Lie Derivatives and Parallel Transport

PhizzyQs
Messages
11
Reaction score
0
Hi, I've begun learning about General Relativity, though I've already had some exposure to differential geometry.

In particular, I understand that Lie Differentiation is a more "primitive" process than Covariant Differentiation (in that the latter requires some sort of connection).

My question is this: parallel transport can be used to understand how a vector changes when you drag in along a curve on a certain surface. To be sure, you institute local coordinates, compute the metric, and then the connection (here, the connection being used, in this coordinate basis, are the Christoffel symbols), and then solve the differential equation.

In this way, you can find out, for instance, how much the vector changes its direction under a certain curve. But, is this information only encoded in the connection? That is to say, to find out how much the vector deviates, must I employ parallel transport, or is there some procedure, using only Lie Derivatives, to examine the change?
 
Physics news on Phys.org
Lie derivatives also define a sort of transport. However, the covariant derivative does not depend on objects outside the curve, while the Lie derivative does. So in Lie transport, the curve must be specified as an integral curve of a vector field.
 
The absolute derivative of a vector uμalong a curve with tangent vector vμ is uμvν (this is zero for parallel transport), whereas the Lie derivative along the same curve is uμvν - vμuν.

I think what you mean by "outside the curve" is that the Lie derivative depends on the gradient of v, not just v itself.
 
Bill_K said:
I think what you mean by "outside the curve" is that the Lie derivative depends on the gradient of v, not just v itself.

Yes, so v must be a vector field, and not just the tangent vector to a curve.
 
Oh, I know that much. My main concern is calculating angular deviation from using Lie derivatives.

I tried this: I begin with a vector A, and there are points P, and Q. They are connected by a curve Y, parametrized by an affine parameter t, whose tangent vector is u = dY(t)/dt. Using the pullback on the isomorphism generated by u, I take the vector from P to Q. Then, I use the metric at P to find <A(Q), u(Q)>. I compare this with <A(P), u(P)>. Given affine parametrization, u does not change under parallel transport, so I think this would be accurate.

EDIT: I am a little bit querulous about my last assumption there, and am examining it now.
 
Last edited:
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top