Light incident on a sphere, focused at a distance ##2R##

AI Thread Summary
The discussion focuses on the application of the refraction equation for a spherical surface to determine the index of refraction of a glass sphere. The equation used is ##\frac{n_1}{p}+\frac{n_2}{q}=\frac{n_2-n_1}{R}##, with the assumption that the object distance ##p## is infinite and the image distance ##q## is set to ##2R##. By substituting these values, the calculation yields an index of refraction ##n_2=2## for the sphere. The reasoning presented is confirmed to be sound, indicating a clear understanding of the refraction principles involved. Overall, the calculations and assumptions align with optical physics concepts.
lorenz0
Messages
151
Reaction score
28
Homework Statement
A solid sphere with index of refraction ##n## and radius ##R##, placed in air, is illuminated by a beam of light coming from a source at a great distance, which is focused on the bottom surface of the sphere. Determine the value of ##n##.
Relevant Equations
##\frac{n_1}{p}+\frac{n_2}{q}=\frac{n_2-n_1}{R}##
I used the equation for the refraction on a spherical surface: ##\frac{n_1}{p}+\frac{n_2}{q}=\frac{n_2-n_1}{R}##, where ##n_1=1## is the index of refraction of air, ##n_2## the index of refraction of the sphere, ##R## is the radius of the glass sphere, ##p## is the object distance which, since the rays are parallel I assumed to be infinite, ##p=\infty##, and ##q## is the image distance, which should be ##q=2R##. Substituting and solving for ##n_2## I get ##n_2=2##.

Does my reasoning make sense? Thanks.
 

Attachments

  • refraction.png
    refraction.png
    8.3 KB · Views: 122
Physics news on Phys.org
Looks good to me.
 
Full size image.
refraction.png
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top