Light interacting with Matter -- Does the wavelength make a difference?

Click For Summary
SUMMARY

The discussion centers on the interaction of light with matter, specifically within the visible spectrum. Participants clarify that while visible light does interact with matter, it is not necessarily more interactive than other wavelengths of electromagnetic (EM) radiation. The complexity of these interactions is influenced by factors such as atomic weight and the specific properties of materials, which can absorb, transmit, or reflect different wavelengths. Spectroscopy is highlighted as a key scientific method for characterizing these interactions.

PREREQUISITES
  • Understanding of electromagnetic radiation and its spectrum
  • Familiarity with the principles of spectroscopy
  • Knowledge of atomic and molecular interactions with light
  • Basic concepts of light absorption, transmission, and reflection
NEXT STEPS
  • Research the principles of spectroscopy and its applications in material science
  • Explore the interaction of infrared radiation with biological tissues
  • Study the effects of different wavelengths on various materials
  • Investigate the role of atomic weight in the absorption of electromagnetic radiation
USEFUL FOR

Students and professionals in physics, material science, and optical engineering, as well as anyone interested in the fundamental interactions between light and matter.

LightningInAJar
Messages
273
Reaction score
36
I heard somewhere that light in the visible spectrum that we see interacts with matter the most? Is that true, and in what ways?
 
Science news on Phys.org
LightningInAJar said:
I heard somewhere

Where?
 
LightningInAJar said:
I heard somewhere that light in the visible spectrum that we see interacts with matter the most? Is that true, and in what ways?
Interacts how? A lot of matter interacts with light. Ok, so...what?

This is not intended to be rude, but; what level of schooling have you completed and what research have you done on your own? This question seems both odd and basic.
 
LightningInAJar said:
I heard somewhere that light in the visible spectrum that we see interacts with matter the most? Is that true, and in what ways?

"Interacting with matter the most" is hard to quantify. There are various ways that EM radiation interacts with matter and I'm not sure there's a quick and easy way to define "more" or "less" interactivity across the entire spectrum.
 
russ_watters said:
Interacts how? A lot of matter interacts with light. Ok, so...what?

This is not intended to be rude, but; what level of schooling have you completed and what research have you done on your own? This question seems both odd and basic.
That is rude and a bachelor's.
 
I was reading something somewhere (don't remember where or else I could read more into it) that the reason we see within the spectrum that we do is because that "light" interacts more with matter than than radiation outside of it. I know dark matter doesn't interact with light and that is most of the universe. At least not wavelengths we can currently measure anyway. Maybe our light spectrum interacts largely with matter below a certain atomic weight?
 
LightningInAJar said:
I was reading something somewhere (don't remember where or else I could read more into it) that the reason we see within the spectrum that we do is because that "light" interacts more with matter than than radiation outside of it. I know dark matter doesn't interact with light and that is most of the universe. At least not wavelengths we can currently measure anyway. Maybe our light spectrum interacts largely with matter below a certain atomic weight?

Light interacts with electrically charged matter in a very, very complicated manner, but the atomic weight of something doesn't really make a big difference on whether or not EM radiation will interact with it. A hypothetical charged particle with 10 million times the mass of a proton would probably interact with light just fine.
 
I don't think visible light interacts "more" with matter than any other wavelength, not in general.

It's worth noting, though, that waves typically don't interact with things much smaller than their wavelength. So it's difficult to imagine an organism our size that could (even in principle) detect long-wave radio. For actual imaging rather than mere detection you need optics and multiple pixel sensors, and there's loads of other functions your body needs space for, so you end up having to have fairly small sensors - and that means fairly short wavelengths.

But you can't go too short because a lot of matter is fairly transparent to very short wavelengths - x-rays penetrate flesh but not bone, and gamma rays start to cause ionisation. Also, the Sun doesn't emit much in these wavelengths (relatively speaking, anyway) so they are less useful naturally.

So I think you can make the case that if vision was going to happen at all it would be in the IR/visible/UV bands given the typical size range of creatures found on Earth and the spectral class of our star. But I don't think that's anything to do with a general rule about "light interacting more with matter" than other EM.
 
LightningInAJar said:
That is rude and a bachelor's.
Not really : he's trying to find out what you mean by your question, specifically "interact".

What is the origin of "a bachelor's" in the manner that you're using it ?

On Earth, I suspect the most common "interactive" wavelength would be in the infrared region, which most things both absorb and emit.

This may help : a graph showing how the atmosphere blocks certain wavelengths/bands
 
  • #10
LightningInAJar said:
That is rude and a bachelor's.
It's not rude. He's trying to figure out how to best answer a confusing question.
 
  • Like
Likes   Reactions: Vanadium 50
  • #11
Each type of matter, whether it's an, atom, molecule, whatever has it's own unique way of interacting (absorption, transmission, reflection) with different wavelengths of radiation. The science of characterizing materials this way is called spectroscopy and is worth looking into. You might also study scattering phenomenon.

So, it's hard to generalize. I suppose you could say that shorter wavelengths are more likely to interact, since they have higher energy, but that still depends on what the material is.
 
  • #13
LightningInAJar said:
http://news.mit.edu/2016/all-photons-imaging-algorithm-0929

At least in terms of body materials our body interacts better in the visible spectrum?
"Interacts better" is a subjective judgement that depends on the goal of the unspecified interaction. In many cases, the answer would be "no". E.g.:

X-rays "interact better" with the body than visible light if your goal is to take pictures of bones.

Near infrared "interacts better" with the body than visible light if your goal is remote heating.

Note, the article says "interacts most" (meaning absorption) whereas you said "interacts best" in this recent post. But in my opinion, "interacts" alone is still vague and the article apparently meaning 'absorbs most' isn't really true.
 
  • #14
Ibix said:
It's worth noting, though, that waves typically don't interact with things much smaller than their wavelength.
I'm just being difficult here but many molecules absorb and emit radiation with mm and cm wavelengths - in a very measurable way. Thing is, when you have a very tight resonance, that general wavelength / size rule falls down. We have all had a cheap radio receiver with a ferrite rod, for receiving mf and lf signals. The rod (the whole receiver even) may be only say 10cm long but it picks up 1500m wavelength signals with no trouble. How? the very tight resonance that the rod material gives the matching (aka tuning) circuit plus the fact that it looks at the magnetic field rather than mainly the electric field.
Unfortunately, the same sort of Q doesn't seem to be available at 1higher frequencies, or ferrite rod antennae could be used for VHF or even WiFi. I had a colleague who was looking into using ferrite for VHF portable receivers but suitable material wasn't available at the time.
 
  • Like
Likes   Reactions: vanhees71 and Ibix

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 64 ·
3
Replies
64
Views
5K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
10K
  • · Replies 207 ·
7
Replies
207
Views
13K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 81 ·
3
Replies
81
Views
9K
  • · Replies 1 ·
Replies
1
Views
1K