PeterDonis said:
Yes, this works--for small displacements. But what does "small" mean? It means "small enough that no tidal gravity effects are observable". In other words, we are still working in a single local inertial frame. But as I've already pointed out several times, this will not work for analyzing gravitational waves, because gravitational waves are made of tidal gravity--they are waves of spacetime curvature, and spacetime curvature is tidal gravity. So this definition of distance cannot work for analyzing GWs, because the displacements involved cannot be "small" enough.
PeterDonis said:
Yes, but only because we are limiting ourselves to "small" displacements, i.e., to a single local inertial frame. But suppose we want to go further; suppose we want to construct a family of spacelike hypersurfaces that (a) foliate spacetime, or at least the region of spacetime occupied by the congruence of worldlines we are interested in, (b) are everywhere orthogonal to the congruence of worldlines we are interested in, and (c) all have the same spatial metric at every event as the spatial metric ##h_{ab}## we see in the tangent space at that event.
The problem is that it might be impossible to meet all of these requirements at once. In particular, (b) can't be satisfied if the congruence has nonzero vorticity, and (c) can't be satisfied under conditions I'm not entirely clear about, but which at least include nonzero vorticity (heuristically, (c) can't be satisfied if the spatial metric ##h_{ab}## can only be extended beyond a single tangent space as a quotient space metric, not as the metric on an actual spacelike slice in the spacetime).
I don't think I agree with your characterization, primarily because the method can be and is used to calculate the relative acceleration between geodesics. So it works better than you give it credit for.
But rather than discussing a negative, let's discuss a positive. Suppose we specify some congruence of worldlines, for a manifold with one space and one time dimension, and we have a point P on a fiducial worldline in the congruence. Then we have a 1-parameter group of worldlines that fill our 2d space-time. We let t be the time parameter along the geodesic, and s be the space parameter. We basically have a coordinate system that picks out a specific point in space-time by the values (s,t), where s picks out which worldine in our congruence, and t picks out where on the worldline a point is.
For sufficiently nearby worldines in the congruence, we can define a dispalcement "vector" d with ##\Delta t=0## and ##\Delta s## nonzero, such that ##h_{ab} d^a d^b## gives us the square of the distance of P from the worldline, and ##h^a{}_b d^a## gives us the displacement from P to P' such that (P' - P) is orthogonal to the tangent vectors of the congruence.
By leveraging this construct, we can find the distance from P to a nearby point ##P_1##, and the distance from ##P_1## to ##P_2##, and so on. By taking the limit with a large number of intermediate points, we can find the distance between P and an arbitrary worldline no matter how far away - given that we've picked out a congruence.
For the gravity wave case, we can examine how fast ##h_{ab}## changes. First we'd need to pick our congruence. The congruence that is easiest to pick out is the geodesic congruence. We start with the full line element for the gravity wave:
$$-dt^2 + \left( 1 + 2 f(t-z) \right) dx^2 + \left( 1 - 2 f(t-z) \right) dy^2 + dz^2 $$
(Do I need a reference here? Or do we , hopefully, have agreement).
But we set x=s, y=0, z=0 to to reduce it to our 1space-1time problem, and get:
$$-dt^2 + \left( 1 + 2 f(t) \right) ds^2 $$
f(t) is the Ligo "chirp" function, with a peak mangintude of about ##10^{-21}##. Potentially confusing, I've chosen to stick with "s" as our singe spatial coordinate.
We note that ##s(\tau)## = constant is a geodesic, and that it's tangent ##\xi^a = \partial_t##. We calculate ##\xi_a = -dt##, so we see that ##h_{ab} = g_{ab} + \xi_a \xi_b## is simply:
$$\left | \begin{matrix} 0 & 0 \\ 0 & 1+2\,f(t) \end{matrix} \right | $$
So the end result of our elaborate discussion is that for a geodesic congruence, the distance is ##\sqrt{1+2f(t)} \, \Delta s \approx (1 + f(t) ) \, \Delta s##. With no approximations needed. A result you'll see worked out in many places without the preceeding long discussion, via coordinate dependent methods. This construction leads to the "expanding space" point of view.
What if we chose a different congruence? For instance, a rigid congruence, with no expansion or shear. It's a much harder problem to work formally. I have a pretty good idea how it should work out, but I think we need to settle the other issues first.