Limit of Nested Square Root Expression at Infinity: How to Solve?

  • Thread starter Thread starter transgalactic
  • Start date Start date
  • Tags Tags
    Limit
transgalactic
Messages
1,386
Reaction score
0
i need to solve this limit
<br /> \lim_{x-&gt;\infty}\left ( \sqrt{x+\sqrt{x+\sqrt{x}}}-\sqrt{x}\right)<br />
i tried
<br /> \lim_{x-&gt;\infty}\left ( \sqrt{x+\sqrt{x+\sqrt{x}}}-\sqrt{x}\right)=\\<br /> \lim_{x-&gt;\infty}\left (\frac{\frac{1}{\sqrt{x}}\sqrt{x+\sqrt{x+\sqrt{x}}}-\sqrt{x}}{\frac{1}{\sqrt{x}}} \right)<br />
but i get 0/0

??
 
Last edited:
Physics news on Phys.org
Well, 0/0 is not an answer. Put some numbers in and see what you get. That will at least give you an idea of what the limit might be.
 
i agree that 0/0 is not an answer
how to solve it?
 
transgalactic said:
i need to solve this limit
<br /> \lim_{x-&gt;\infty}\left ( \sqrt{x+\sqrt{x+\sqrt{x}}}-\sqrt{x}\right)<br />
i tried
<br /> \lim_{x-&gt;\infty}\left ( \sqrt{x+\sqrt{x+\sqrt{x}}}-\sqrt{x}\right)=\\<br /> \lim_{x-&gt;\infty}\left (\frac{\frac{1}{\sqrt{x}}\sqrt{x+\sqrt{x+\sqrt{x}}}-\sqrt{x}}{\frac{1}{\sqrt{x}}} \right)<br />
but i get 0/0

??

That looks to me like a candidate for "rationalizing" Write it as
\frac{\left ( \sqrt{x+\sqrt{x+\sqrt{x}}}-\sqrt{x}\right)}{1}
and multiply both numerator and denominator by
\left ( \sqrt{x+\sqrt{x+\sqrt{x}}}+\sqrt{x}\right)

You will get
\frac{x+ \sqrt{x+\sqrt{x}}- x}{\sqrt{x+\sqrt{x+\sqrt{x}}}+\sqrt{x}}[/itex]<br /> <br /> Now use the standard &quot;trick&quot; when x is going to infinity: divide both numerator and denominator by the highest power of x, here \sqrt{x}, so every x is moved to the denominator:<br /> \frac{\sqrt{1+ \sqrt{1/x}}}{\sqrt{1+ \sqrt{(1/x)+ \sqrt{1/x^2}}}+ 1}<br /> <br /> As x goes to infinity, each of those fractions goes to 0.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top