gop
- 55
- 0
Homework Statement
Calculate for x\in(0,\pi/2)
\lim_{N\rightarrow\infty}\prod_{n=0}^{N}cos(\frac{x}{2^{n}})
Hint: Use the Double-Angle Formulas for the sine.
Homework Equations
The Attempt at a Solution
cos(x)\cdot cos(\frac{x}{2})\cdot cos(\frac{x}{4})\cdot...
\frac{\sin2x}{2\cdot\sin x}\cdot\frac{\sin x}{2\cdot\sin x/2}\cdot\frac{\sin x/2}{2\cdot\sin x/4}\cdot...
\frac{\sin2x}{2}\cdot\frac{1}{2}\cdot\frac{1}{2}\cdot...\cdot\frac{1}{2\cdot\sin x/N}
\frac{\sin2x}{\sin(x/{2^N})\cdot2^{N}}
However, now I have to resolve the 0*infinity in the denom. But how do I resolve that.
Last edited: