You can then divide both numerator and denominator within the natural logarithm by ax, something like:
\lim_{x \rightarrow \infty} \ln \left( \frac{a ^ x}{a ^ x + b} \right) = \lim_{x \rightarrow \infty} \ln \left( \frac{\frac{a ^ x}{a ^ x}}{\frac{a ^ x + b}{a ^ x}} \right) = \lim_{x \rightarrow \infty} \ln \left( \frac{1}{1 + \frac{b}{a ^ x}} \right).
Can you go from here?
--------------------
L'Hopital's rule can be use to solve \frac{0}{0}, or \frac{\infty}{\infty} form. It states:
\lim_{x \rightarrow \alpha} \frac{f(x)}{g(x)} = \lim_{x \rightarrow \alpha} \frac{f'(x)}{g'(x)}.
Note that it can only be used when f(x), and g(x) both tend to 0 or infinity.
Viet Dao,