Write the limit as:
$$L=\prod_{k=1}^{\infty}\left(\frac{4k^2}{4k^2-1}\right)$$
Euler's infinite product for the sine function states:
$$\frac{\sin(x)}{x}=\prod_{k=1}^{\infty}\left(1-\left(\frac{x}{k\pi}\right)^2\right)$$
Let $$x=\frac{\pi}{2}$$:
$$\frac{\sin\left(\dfrac{\pi}{2}\right)}{\dfrac{\pi}{2}}=\prod_{k=1}^{\infty}\left(1-\left(\frac{\dfrac{\pi}{2}}{k\pi}\right)^2\right)$$
$$\frac{2}{\pi}=\prod_{k=1}^{\infty}\left(1-\left(\frac{1}{2k}\right)^2\right)=\prod_{k=1}^{\infty}\left(\frac{4k^2-1}{4k^2}\right)$$
$$\frac{\pi}{2}=\prod_{k=1}^{\infty}\left(\frac{4k^2}{4k^2-1}\right)$$
Hence:
$$L=\frac{\pi}{2}$$
This is known as Wallis' product. :D