Limit Product Evaluation: $\displaystyle \infty$

  • Context: MHB 
  • Thread starter Thread starter juantheron
  • Start date Start date
  • Tags Tags
    Limit Product
Click For Summary
SUMMARY

The limit of the product as \( n \) approaches infinity, specifically \( \lim_{n\rightarrow \infty}\prod^{n}_{k=1}\left(1+\frac{1}{4k^2-1}\right) \), can be evaluated using Wallis's formula and the Sandwich Theorem. The discussion highlights the effectiveness of these mathematical tools in deriving the limit. The solution provided by the user demonstrates a clear application of these concepts to arrive at the conclusion.

PREREQUISITES
  • Understanding of limits in calculus
  • Familiarity with Wallis's formula
  • Knowledge of the Sandwich Theorem
  • Basic principles of infinite products
NEXT STEPS
  • Study the derivation and applications of Wallis's formula
  • Explore the Sandwich Theorem in greater detail
  • Learn about infinite products and their convergence
  • Investigate other techniques for evaluating limits in calculus
USEFUL FOR

Mathematicians, calculus students, and anyone interested in advanced limit evaluation techniques will benefit from this discussion.

juantheron
Messages
243
Reaction score
1
Evaluate $\displaystyle \lim_{n\rightarrow \infty}\prod^{n}_{k=1}\left(1+\frac{1}{4k^2-1}\right)$
 
Physics news on Phys.org
My solution:

Write the limit as:

$$L=\prod_{k=1}^{\infty}\left(\frac{4k^2}{4k^2-1}\right)$$

Euler's infinite product for the sine function states:

$$\frac{\sin(x)}{x}=\prod_{k=1}^{\infty}\left(1-\left(\frac{x}{k\pi}\right)^2\right)$$

Let $$x=\frac{\pi}{2}$$:

$$\frac{\sin\left(\dfrac{\pi}{2}\right)}{\dfrac{\pi}{2}}=\prod_{k=1}^{\infty}\left(1-\left(\frac{\dfrac{\pi}{2}}{k\pi}\right)^2\right)$$

$$\frac{2}{\pi}=\prod_{k=1}^{\infty}\left(1-\left(\frac{1}{2k}\right)^2\right)=\prod_{k=1}^{\infty}\left(\frac{4k^2-1}{4k^2}\right)$$

$$\frac{\pi}{2}=\prod_{k=1}^{\infty}\left(\frac{4k^2}{4k^2-1}\right)$$

Hence:

$$L=\frac{\pi}{2}$$

This is known as Wallis' product. :D
 
Thanks Markfl for Nice solution. I have solved it using Wall,s formula and sandwitch Theorem
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K