MHB Limit Product Evaluation: $\displaystyle \infty$

  • Thread starter Thread starter juantheron
  • Start date Start date
  • Tags Tags
    Limit Product
Click For Summary
The limit product evaluation discussed is focused on calculating the limit as n approaches infinity for the product of the series defined by the expression (1 + 1/(4k^2 - 1)). The solution involves applying Wallis's formula and the Sandwich Theorem to derive the result. The conversation acknowledges a contributor named Markfl for their effective solution. The evaluation ultimately leads to a deeper understanding of infinite products in mathematical analysis. This discussion highlights the application of advanced mathematical techniques in solving limit problems.
juantheron
Messages
243
Reaction score
1
Evaluate $\displaystyle \lim_{n\rightarrow \infty}\prod^{n}_{k=1}\left(1+\frac{1}{4k^2-1}\right)$
 
Mathematics news on Phys.org
My solution:

Write the limit as:

$$L=\prod_{k=1}^{\infty}\left(\frac{4k^2}{4k^2-1}\right)$$

Euler's infinite product for the sine function states:

$$\frac{\sin(x)}{x}=\prod_{k=1}^{\infty}\left(1-\left(\frac{x}{k\pi}\right)^2\right)$$

Let $$x=\frac{\pi}{2}$$:

$$\frac{\sin\left(\dfrac{\pi}{2}\right)}{\dfrac{\pi}{2}}=\prod_{k=1}^{\infty}\left(1-\left(\frac{\dfrac{\pi}{2}}{k\pi}\right)^2\right)$$

$$\frac{2}{\pi}=\prod_{k=1}^{\infty}\left(1-\left(\frac{1}{2k}\right)^2\right)=\prod_{k=1}^{\infty}\left(\frac{4k^2-1}{4k^2}\right)$$

$$\frac{\pi}{2}=\prod_{k=1}^{\infty}\left(\frac{4k^2}{4k^2-1}\right)$$

Hence:

$$L=\frac{\pi}{2}$$

This is known as Wallis' product. :D
 
Thanks Markfl for Nice solution. I have solved it using Wall,s formula and sandwitch Theorem
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
1K
Replies
8
Views
1K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 1 ·
Replies
1
Views
10K