MHB Limit Product Evaluation: $\displaystyle \infty$

  • Thread starter Thread starter juantheron
  • Start date Start date
  • Tags Tags
    Limit Product
juantheron
Messages
243
Reaction score
1
Evaluate $\displaystyle \lim_{n\rightarrow \infty}\prod^{n}_{k=1}\left(1+\frac{1}{4k^2-1}\right)$
 
Mathematics news on Phys.org
My solution:

Write the limit as:

$$L=\prod_{k=1}^{\infty}\left(\frac{4k^2}{4k^2-1}\right)$$

Euler's infinite product for the sine function states:

$$\frac{\sin(x)}{x}=\prod_{k=1}^{\infty}\left(1-\left(\frac{x}{k\pi}\right)^2\right)$$

Let $$x=\frac{\pi}{2}$$:

$$\frac{\sin\left(\dfrac{\pi}{2}\right)}{\dfrac{\pi}{2}}=\prod_{k=1}^{\infty}\left(1-\left(\frac{\dfrac{\pi}{2}}{k\pi}\right)^2\right)$$

$$\frac{2}{\pi}=\prod_{k=1}^{\infty}\left(1-\left(\frac{1}{2k}\right)^2\right)=\prod_{k=1}^{\infty}\left(\frac{4k^2-1}{4k^2}\right)$$

$$\frac{\pi}{2}=\prod_{k=1}^{\infty}\left(\frac{4k^2}{4k^2-1}\right)$$

Hence:

$$L=\frac{\pi}{2}$$

This is known as Wallis' product. :D
 
Thanks Markfl for Nice solution. I have solved it using Wall,s formula and sandwitch Theorem
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top