Limit question (from complex analysis)

synapsis
Messages
9
Reaction score
0

Homework Statement



This seems to be just a simple limit problem and I feel like I should know it but I'm just not seeing it.

I have a continuous function f, and a fixed w

I want to show that the limit (as h goes to 0) of the absolute value of:

(1/h)*integral[ f(z)-f(w) ]dz = 0 (the integral is over a contour)


Homework Equations



I believe the key to the problem is that f is continuous.

The Attempt at a Solution



For any a>0 there exists a b>0 such that z within b of w implies f(z) within a of f(w).

The problem is it seems to me like the 1/h term is going to infinity while the integral term is going to 0, which is indeterminate so I don't know how to get that the limit goes to 0.
 
Physics news on Phys.org
Oh, I have an idea. The contour I'm integrating over is the line connecting w+h to w. So I believe I can use the ML Estimate to show the limit goes to 0...
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...

Similar threads

Back
Top