Let a_1, a_2, ... be a bounded sequence of real numbers. According to Rosenlicht's "Introduction to Analysis", the limit superior is defined as(adsbygoogle = window.adsbygoogle || []).push({});

sup {x : a_n > x for infinitely many n}.

It is very hard to work with this definition. I'm used to the simpler one:

sup {a : there exists a subsequence of a_1, a_2, ... that converges to a}.

I'm trying to show that these two are equivalent. Denote by A and B the set in the first and second definition, respectively. For any subsequence that converges to a in B, there is a monotonic subsequence, say b_1, b_2, ... that converges to a. If b_1, b_2, ... is increasing, then every b_i is in A. If it is decreasing, then x = inf {b_1, b_2, ...} is in A. For every x in A, there is a corresponding convergent monotonic subsequence. This is all I can think of. Any tips?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Limit Superior - Equivalent Definitions

**Physics Forums | Science Articles, Homework Help, Discussion**