Limit with trigonometric and polynomial function.

FaroukYasser
Messages
62
Reaction score
3

Homework Statement


For $$\lim _{ x\rightarrow \infty }{ \frac { { x }^{ 2 }+{ e }^{ -{ x }^{ 2 }\sin ^{ 2 }{ x } } }{ \sqrt { { x }^{ 4 }+1 } } } $$, determine whether it exists. If it does, find its value. if it doesn't, explain.

Homework Equations


Sand witch theorem and arithmetic rule

The Attempt at a Solution


I reached that the limit is 1 using the following:

$$\lim _{ x\rightarrow \infty }{ \frac { { x }^{ 2 }+{ e }^{ -{ x }^{ 2 }\sin ^{ 2 }{ x } } }{ \sqrt { { x }^{ 4 }+1 } } } =\lim _{ x\rightarrow \infty }{ \frac { { x }^{ 2 } }{ \sqrt { { x }^{ 4 }+1 } } +\frac { 1 }{ { e }^{ { x }^{ 2 }\sin ^{ 2 }{ x } }\sqrt { { x }^{ 4 }+1 } } } \\ \frac { 1 }{ { e }^{ x } } <\frac { 1 }{ { e }^{ { x }^{ 2 } }\sqrt { { x }^{ 4 }+1 } } <\frac { 1 }{ { e }^{ { x }^{ 2 }\sin ^{ 2 }{ x } }\sqrt { { x }^{ 4 }+1 } } <\frac { 1 }{ \sqrt { { x }^{ 4 }+1 } } \\ \\ \lim _{ x\rightarrow \infty }{ \frac { 1 }{ { e }^{ x } } } =\lim _{ x\rightarrow \infty }{ \frac { 1 }{ \sqrt { { x }^{ 4 }+1 } } } =0$$
Therefore by the sandwich theorem:
$$\lim _{ x\rightarrow \infty }{ \frac { 1 }{ { e }^{ { x }^{ 2 }\sin ^{ 2 }{ x } }\sqrt { { x }^{ 4 }+1 } } } =0$$

Also,

$$\lim _{ x\rightarrow \infty }{ \frac { { x }^{ 2 } }{ \sqrt { { x }^{ 4 }+1 } } } =1$$

Hence:
$$\lim _{ x\rightarrow \infty }{ \frac { { x }^{ 2 }+{ e }^{ -{ x }^{ 2 }\sin ^{ 2 }{ x } } }{ \sqrt { { x }^{ 4 }+1 } } } =1+0=1$$

I tried to put the limit into wolfram but it gave me a time limit exceeded. Is there a reason for this? Does the limit really not exist? And is there anything wrong in my argument?

Thank you
 
Physics news on Phys.org
I think you're doing just fine. which of the two did wolfie suffocate on ?
 
BvU said:
I think you're doing just fine. which of the two did wolfie suffocate on ?
Wolfram exceeded time on the original expression without breaking it down. (Although I have no idea why it did)

And thanks for answering :)
 
So you break it down and feed wolfie smaller bites !
 
  • Like
Likes FaroukYasser
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top