Linear Algebra is harder than Calculus

AI Thread Summary
Linear algebra is perceived as harder than calculus not due to its intrinsic difficulty, but because of inadequate pedagogical resources and teaching methods. Many learners find that while calculus has abundant instructional materials, linear algebra lacks similar support, leading to confusion with advanced concepts presented too early. The discussion highlights the importance of understanding foundational mechanics and notation before tackling complex problems in linear algebra. Additionally, there is a suggestion that linear algebra should be compared more to analysis than calculus, as it involves a higher level of abstraction and proof-based learning. Ultimately, mastering linear algebra requires a shift in approach, emphasizing comprehension over rote memorization.
g.lemaitre
Messages
267
Reaction score
2
But not because LA is intrinsically more difficult than calc but because the pedagological tools for LA are seriously flawed. For calc you just put in the title of the problem you're working on in youtube and out pops about 10 videos that will walk you through how to do the problem. Plus the solution manual I had for calc was honestly easier to understand than the worked examples in the book, it had more steps. For linear Algebra you don't have that. There are only 2 lecture series on LA by Strang and Khan and they aren't all that good. I'm on my 3rd LA text and they've all been pretty bad. The mistake they make is they assume the real basic of LA are too easy and they jump immediately to these abstruse problems that no one cares about. They're almost like brain teasers. I can't even master the mechanics of LA or the notation and then they shove these hard problems in my face without teaching me how to do the real easy stuff.
 
Physics news on Phys.org
Is this a question?
Strang's text/class is far from the best organized on the market, but it's probably one of the most concrete and applications oriented. If you find it "abstruse" and disconnected from the "real world", then you're pretty out of luck as far as LA (or any higher math) goes. There are clearer and more insightful texts, but they're considerably more abstract. Linear algebra is a beautiful subject, but it only gets more abstract from here. Doing LA means doing proofs, which means not having fixed algorithms; solving problems is going to require some amount of exploration.
 
Last edited:
"Linear algbra vs calculus" isn't really a fair comparison, any more than comparing say arithmetic with trigonometry.

IMO You should really be comparing linear algebra with analysis, not calculus.
 
It's really not a good thing to rely on youtube videos and solution videos. The further you go in your education, the less such things are available. If you rely too much on these resources, then I think you're studying wrong.
 
g.lemaitre said:
For calc you just put in the title of the problem you're working on in youtube and out pops about 10 videos that will walk you through how to do the problem.

This is called "letting someone else do your thinking for you.

g.lemaitre said:
Plus the solution manual I had for calc .

As is this.

g.lemaitre said:
The mistake they make is they assume the real basic of LA are too easy and they jump immediately to these abstruse problems that no one cares about.

It sounds more like you managed to get through Calc without learning how to tackle problems on your own - without solution manuals and without youtube - and now you're paying for it.
 
Also, with LA, this is probably your first course where you are dealing more with the properties of the structures you are studying than with the actual things that make up those structure. This is another layer of abstraction that you have not yet encountered, and so it will seem odd at first.
 
Yep its true. Linear algebra is ridiculously hard and it is made harder by bad teachers.

However there's nothing you can do about it until you become a professor of mathematics and write your own book on the subject so you have to suck it up to pass the class.
 
Think of it as an opportunity! For (what appears to be) the first time, you're being forced to learn something--not simply memorize a youtuber's computation.
 
Benn said:
Think of it as an opportunity! For (what appears to be) the first time, you're being forced to learn something--not simply memorize a youtuber's computation.

Anyone that does not like or work in pure mathematics has little need of proving mathematical theorms, only with being skillful at the tools of computing things and arithmetic.

Even in physics, they call things "derivations" and not "proofs" for a reason: it is vastly different than an actual proof in actual math.
 
  • #10
chill_factor said:
Yep its true. Linear algebra is ridiculously hard and it is made harder by bad teachers.

See, I was under a different impression. Gilbert Strang says in his preface that LA is easier than Calc. So you're saying he's wrong?

Right now, I have to make a critical decision. When I try out the exercises I literally get about 90% of them wrong. Either I'm going to have to go back to the beginning and write down every single thing I understand and ask questions about every single thing I don't understand or just slog through it with only minimal understanding and hope I can get through QM without it. I do self-study and I'm not looking for a job in the science. In fact, I actually belong to the humanities, but I discovered a long time ago that if you stay isolated in the humanities as 97% of humanities majors do, then you're doing yourself an immense disservice and you're setting yourself up for a lopsided understanding of the world.
 
  • #11
I always get confused by the level of course that people are talking about. If you've never seen any linear algebra in your life and you've only had calculus then I assume you are referring to a course similar that usually taught to freshmen and sophomores in the US which is just matrix and vector algebra in Euclidian space, mostly 3-dimensional. If that's the case you should work through a book like Leon before you try to study general theory in abstract spaces.
 
  • #12
Linear Algebra is harder than calculus only in the fact that linear algebra is rigorous and elementary calculus is, for the most part, based on intuition

Analysis, which is pretty much just rigorous caluclus is, and I think everyone would agree, harder than linear algebra - imo as far as branches of maths go linear algebra is probably one of the nicer ones, I believe Strang said 'linear algebra is like analysis but everything is behaving nicely'

Perhaps you should learn some set theory and group theory before you start on linear algebra? That way you'll see how you build linear algebra up, starting with sets, adding a set of operations on the set, then adding an action of another set, called a field, on the set.
Or maybe try reading a basic proofs book, like 'How to Prove it - A Structured Approach', that might give you some kind of insight into how to do proofs in linear algebra and introduce you to a level of abstraction beyond the 'intuitive feel' that you're used to.

Either I'm going to have to go back to the beginning and write down every single thing I understand and ask questions about every single thing I don't understand
This is a good approach, if you know how to prove results then slowly they'll seep into you as if they were obvious facts

or just slog through it with only minimal understanding and hope I can get through QM without it.
Quantum Mechanics is pretty tricky on it own, without a solid background in linear algebra you're going to get lost before you even start. You'll also want to understand some basic analysis facts here too.

I'll also reccomend Gilbert Strangs "Introduction to Linear Algebra" if you haven't already read it.

The mistake they make is they assume the real basic of LA are too easy and they jump immediately to these abstruse problems that no one cares about
You'll care about those things one day, I think most people felt the same way about the isomorphism theorems when they first saw them but later on realized that it's quite a handy little fact to have with you. (I think a lot of authors don't point out enough when a theorem is going to turn out to be especially useful later on, so you end up wading through a sea of theorems and proofs without any idea why these are important, which is why it's a good idea to work with them for a while and try and apply them to a problem even if it is taylor made to require the use of your newly discovered theorem)

I can't even master the mechanics of LA or the notation and then they shove these hard problems in my face without teaching me how to do the real easy stuff.
If you're having trouble understanding notation then you just need to work with it for a while really. Usually when I start on a new textbook and the author introduces a whole new set of notations I need to stop for a second and look at the definitions, absorb what they mean and perhaps try and make a few examples.

I also agree 100% with Vandium50 and micromass, you've got to stop relying on there being numerous sources (especially lectures online, textbooks imo are far superior to any lecture you haven't personally attended) and you need to know how to derive the results given in the textbook/lectures.
 
  • #13
g.lemaitre said:
See, I was under a different impression. Gilbert Strang says in his preface that LA is easier than Calc. So you're saying he's wrong?

Right now, I have to make a critical decision. When I try out the exercises I literally get about 90% of them wrong. Either I'm going to have to go back to the beginning and write down every single thing I understand and ask questions about every single thing I don't understand or just slog through it with only minimal understanding and hope I can get through QM without it. I do self-study and I'm not looking for a job in the science. In fact, I actually belong to the humanities, but I discovered a long time ago that if you stay isolated in the humanities as 97% of humanities majors do, then you're doing yourself an immense disservice and you're setting yourself up for a lopsided understanding of the world.

You don't need to be a genius in linear algebra proofs to do quantum mechanics problems. To fully understand the theory, you might need to go deeper, but I find that its a waste of time to try and "intuitively" understand the matrix formulation since wave mechanics is soooo much easier to visualize, and matrix formulation is in my opinion strictly used for problem solving, especially for spin systems since wave mechanics isn't so nice with spin systems.

In problem solving, you will need to know how to do matrix algebra with square matricies i.e. take eigenvalues, then find eigenfunctions. Its not computationally difficult, just be careful. You'll also need to know the concepts of operator algebra. Pick up a copy of Griffith and try some problems out. If you are interested in *science* as opposed to *math* I think its much better to just straight up do the physics, and pick up whatever math you need along the way, as long as you have a solid math background of: mastery of calculus and multivariable/vector calculus, familiarity with ODEs, integral transforms and basic matrix algebra, and basic understanding of complex variables.

And no, linear algebra is far harder than calculus. Calculus can be "seen" geometrically and its easier to convince yourself that its right. LA cannot. Calculus also doesn't have too many proofs and the formalism is easier to understand since it uses nice familiar things y=f(x) rather than big scary matrices.

genericusrnme said:
Perhaps you should learn some set theory and group theory before you start on linear algebra?

I had an introduction to group theory as part of my molecular spectroscopy class. That stuff is ridiculously difficult, and I was amazed it actually had physical applications. Nonetheless, I do not think it is helpful to learn group theory for elementary linear algebra (the type based on square matrix computations).
 
  • #14
genericusrnme said:
Perhaps you should learn some set theory and group theory before you start on linear algebra? That way you'll see how you build linear algebra up, starting with sets, adding a set of operations on the set, then adding an action of another set, called a field, on the set.
Or maybe try reading a basic proofs book, like 'How to Prove it - A Structured Approach', that might give you some kind of insight into how to do proofs in linear algebra and introduce you to a level of abstraction beyond the 'intuitive feel' that you're used to.

I'm sorry, but I disagree with this advice. You are suggesting that he 1)learns what a group is 2)learns what a field is 3)learns how a field acts on group 4)understand linear algebra.

This is nearly impossible for a few reasons.

First, he is struggling with the abstractness of linear algebra right now. I don't see how adding another layer of abstraction will make things any better.

Second, nearly every algebra book I have seen uses examples from elementary linear algebra (which is what he s doing) as concrete examples. Yes, linear algebra is built from the stuff of Abstract Algebra, but this does not mean that someone needs to understand abstract algebra to understand linear algebra.

What you are suggesting is rather like suggesting that a struggling calc student work his way through baby Rudin. It just doesn't work because the textbook authors assume familiarity with more elementary math.
 
  • #15
I guess I wasn't prepared for LA being harder than calc. I didn't take LA that seriously because I thought it would be a breeze, just as calc was more or less a breeze. I was a little caught off guard when I failed to understand it.
 
  • #16
If the questions involve proofs the difficulty is more a function of the professor. It is very easy to ask very difficult questions in either subject.

I think most calc textbooks have harder computational questions than LA textbooks.
 
  • #17
Something I haven't seen anyone ask is what aspects of linear algebra in particular you find difficult. That might help tailor any recommendations as far as alternative texts or materials, also.
 
  • #18
Do you happen to speak french? Your name sounds french.

If so, I found the book "Vecteurs, matrices et nombres complexes" by Vincent Papillon to be an excellent book to learn the subject from scratch.
 
  • #19
Having taken both calc and linear algebra, I struggled with the latter much more until I started using a better studying strategy. In the long run, I am inclined to say linear algebra is earier than elementary calculus. In calculus, you can get by without understanding the intuition behind theorems and just memorizing algorithms, but that won't work too well in linear algebra unless it is taught to engineers. I found actually going through the theorems one by one with TA's, professor, or other students who were well grounded in the book is all I really needed. Once I understood the theorems, I could answer the most difficult questions on the exams. In calculus, I felt that wasn't the case and there still computational questions that could stump you even if you have a deep, rigorous understanding of the material.

Don't approach linear algebra the same way you approach elementary calculus. It just won't work out too well in most cases. And if you think its hard now, wait until you get to linear transformations/mappings and the relationship between those concepts and what you have learned earlier in the course (rank, nullity, orthogonal projection, etc).
 
  • #20
tamtam402 said:
Do you happen to speak french?
Georges Lemaitre was one of the founders of Big Bang theory. Sometimes his name gets attached onto the Friedman-Walker-Robertson-Lemaitre Metric


As for what aspects of LA I'm having trouble with, practically everything except for the real easy arithmetic parts, liking multiplying two matrices together. I've put a few specific questions in the homework section.
 
  • #21
Admittedly, I only found three questions--vector addition, matrix times its transpose, and computing projections--but it seems to me like for you, some aspects of the notation are not natural yet. For instance, the idea that a scalar times a vector multiplies all the elements of that vector. Well, maybe the idea makes sense on paper, but otherwise, the problems about vectors that you posted about have more to do with the arithmetic underlying the calculation than the concept itself.

Sorry I can't be of more help. Best of luck to you.
 
  • #22
Muphrid said:
Admittedly, I only found three questions--vector addition, matrix times its transpose, and computing projections--but it seems to me like for you, some aspects of the notation are not natural yet. For instance, the idea that a scalar times a vector multiplies all the elements of that vector. Well, maybe the idea makes sense on paper, but otherwise, the problems about vectors that you posted about have more to do with the arithmetic underlying the calculation than the concept itself.
Sorry I can't be of more help. Best of luck to you.

It took me a while to get my textbook digitized so that i could post questions about it. then unfortunately i relapsed into my chess addiction which took me away from my LA studies. i see chess as a horrible waste of time but to me at least it is profoundly addictive. i hadn't played in 7 years but playing just one game got me hooked on it again and i ended up wasting 20 hours of time spread over about 8 days. hopefully in the next few days i'll get back on it.
 
  • #23
In lieu of scanning the text, some templates for column vectors and matrices in LaTeX might be of use.

A column vector:

<br /> \begin{bmatrix}<br /> 1 \\<br /> 3 \\<br /> -2<br /> \end{bmatrix}<br />

Code:
[tex]
\begin{bmatrix}
1 \\
3 \\
-2
\end{bmatrix}
[/tex]

A matrix:
<br /> \begin{bmatrix}<br /> 1 &amp; 3 &amp; 5 \\<br /> 2 &amp; -4 &amp; 7 \\<br /> -3 &amp; -6 &amp; 10<br /> \end{bmatrix}<br />

Code:
[tex]
\begin{bmatrix}
1 & 3 & 5 \\
2 & -4 & 7 \\
-3 & -6 & 10
\end{bmatrix}
[/tex]

A matrix equation:

<br /> \begin{bmatrix}<br /> 1 &amp; 3 &amp; 5 \\<br /> 2 &amp; -4 &amp; 7 \\<br /> -3 &amp; -6 &amp; 10<br /> \end{bmatrix}<br /> \begin{bmatrix}<br /> 1 \\<br /> 3 \\<br /> -2<br /> \end{bmatrix}<br /> =<br /> \begin{bmatrix}<br /> 0 \\<br /> -28 \\<br /> -41<br /> \end{bmatrix}<br />

Code:
[tex]
\begin{bmatrix}
1 & 3 & 5 \\
2 & -4 & 7 \\
-3 & -6 & 10
\end{bmatrix}
\begin{bmatrix}
1 \\
3 \\
-2
\end{bmatrix}
=
\begin{bmatrix}
0 \\
-28 \\
-41
\end{bmatrix}
[/tex]

Latex is totally insensitive to single line breaks (they're put in by hand with \\), so all that can be written more compactly once you're comfortable with it.
 
  • #24
I thought LA was harder than calculus because many schools start abstract reasoning and proof-writing in LA, whereas a first course in calculus is mostly computational. In LA, you're likely to see somewhat intimidating topics like abstract vector spaces, whereas you wouldn't really see that level of abstraction in calculus unless you were taking advanced calc/real analysis.
 
  • #25
But not because LA is intrinsically more difficult than calc but because the pedagological tools for LA are seriously flawed. For calc you just put in the title of the problem you're working on in youtube and out pops about 10 videos that will walk you through how to do the problem. Plus the solution manual I had for calc was honestly easier to understand than the worked examples in the book, it had more steps.

There is a greater variety of difficulty levels in different linear algebra courses. Some are taught very abstractly, using vector spaces over arbitrary fields, and very heavy on the proofs. Some are based more on matrix calculations. There are also problems of greatly varying difficultly that profs can throw at you, depending on how difficult they want to make it.

There is a big difference between linear algebra and calculus. Calculus is for still aimed to be taught at fairly non-mathematical people. But once you get to linear algebra, it's assumed that most of the weaker students have been weeded out because probably most people who study linear algebra are there by choice, rather than because they are required to take it. It's for people who are reasonably comfortable with math. If you are a big math-phobic, it's not a good idea to study it or any subject that requires it. In particular, it's not for people who "need to see more steps" and always have example problems worked out for them.

The way it is taught may be pedagogically flawed, but it probably suffers more from pandering to people who are uncomfortable with being asked to understand concepts than it does from being made too difficult. By math majors standards, it's usually an easy class (to be fair I got a C in it, partly from not having figured out how to do math, partly from being late to more than one exam, and also, making dumb mistakes in some cases, even though I pretty much knew what I was doing). The more abstract courses can sometimes be putting the cart before the horse, asking students to accept too many (to them) unmotivated concepts. I would consider a course using arbitrary fields highly inappropriate for students just coming out of standard calculus classes. I never had a problem with problems being too hard or not understanding how to do things. The "how to do stuff" part isn't really that hard. What I did have a problem with is when people just focus on calculations in place of concepts. For example, introducing determinants, but never telling the students that determinants measure the volume of a parallelepiped spanned by the column vectors of a matrix.

For linear Algebra you don't have that. There are only 2 lecture series on LA by Strang and Khan and they aren't all that good. I'm on my 3rd LA text and they've all been pretty bad. The mistake they make is they assume the real basic of LA are too easy and they jump immediately to these abstruse problems that no one cares about. They're almost like brain teasers. I can't even master the mechanics of LA or the notation and then they shove these hard problems in my face without teaching me how to do the real easy stuff.

Without knowing what these "abstruse problems" are, it's hard to say. Maybe the abstruse problems are actually important to understanding the subject and knowing what's going on behind the scenes. It's also not clear what these basics are that are supposedly "not too easy". What if they are too easy for other students?

You don't want to lose the whole class, but on the other hand, you don't want to hold back the better students. Maybe they'll get bored of all that easy stuff.
 
  • #26
Anyone that does not like or work in pure mathematics has little need of proving mathematical theorms, only with being skillful at the tools of computing things and arithmetic.

I disagree because being able to prove theorems, and more importantly, being able to understand why things work, which is the key to proving theorems, actually helps with computing things. Particularly in linear algebra. Linear algebra would be incredibly dull if it were only matrix computations with no theory behind it. Of course, it's really more the intuition than proving the theorems that is useful.

You don't need to be a genius in linear algebra proofs to do quantum mechanics problems. To fully understand the theory, you might need to go deeper, but I find that its a waste of time to try and "intuitively" understand the matrix formulation since wave mechanics is soooo much easier to visualize, and matrix formulation is in my opinion strictly used for problem solving, especially for spin systems since wave mechanics isn't so nice with spin systems.

Waste of time to understand. Yep, that pretty much sums it up. Actually, the vector space approach to QM is more enlightening, I think, if you want to really understand quantum mechanics and feel like it's more of a natural thing that makes sense, rather than some mysterious think that someone else came up with for you to use. I think Dirac more or less demonstrated this from the start with his book. I'm a very visual thinker, by the way.
 
  • #27
I disagree with many of the posters here. Using resources online or solution manuals aren't doing the work for you. I used both and received over 100 percent in both calc 1 and 2. They are simply an aid and to ASSUME he's having them do his homework for his is extremely unjust because you don't know his circumstances.

As far as linear algebra goes, its not so bad in all reality. The hardest part was the proofs. Finding null spaces or col space and even eigenvalues/vectors wasn't extremely hard but to do a general proof to show something is linear without seeing it before is difficult. I got the lowest grade ever in a Math class in LA, which was a B+ which I blame on the proofs.

I also had the worse professor imaginable and literally half the class ended up failing. It's a difficult class. The khan videos weren't helpful. The way I passed was doing all the problems he assigned and then doing them each 2-3 times. And read the book. 95 percent of the class is understand the main concepts because the "math" is basically basic add or subtract or multiplication. If you don't know the what a kernel is in a transformation, you're not going to be able to do the proof or find it or if you don't know the definition of a basis how are you doing to prove it?

In calculus you didn't really need to understand what an integral was to solve it, it was just "backwards" derivatives. The concepts and vocab are just more important in LA that other math courses.
 
  • #28
I disagree with many of the posters here. Using resources online or solution manuals aren't doing the work for you. I used both and received over 100 percent in both calc 1 and 2. They are simply an aid and to ASSUME he's having them do his homework for his is extremely unjust because you don't know his circumstances.

It's not assuming that much, the way he worded things. If you are more independent-minded, you aren't going to be bothered that you can't find ten youtube videos showing you exactly how to do each problem, even providing more steps. Providing more steps. I mean, come on. Asking even for the little microscopic gaps to be filled. At some point, you have to start thinking for yourself a little more.

I think I have looked at about 3 worked solutions total in my life and I am finishing a PhD. How come I didn't need any solutions videos?

It's not that I'm too good to need them. I don't think anyone needs them because it's just not a good strategy. If something is too hard, you need hints, not a full solution with every last teeny-tiny step shown.

Some people receive great grades, but that doesn't mean that they actually learned anything. In high school, at one point I had a C in my trig class (in the end, I got a B-), but I was HELPING the people at the top of my class who had A's. I wasn't even that good at math back then. You can get good grades by cheating and parroting what you are told without even understanding it.
 
  • #29
g.lemaitre said:
But not because LA is intrinsically more difficult than calc but because the pedagological tools for LA are seriously flawed. For calc you just put in the title of the problem you're working on in youtube and out pops about 10 videos that will walk you through how to do the problem. Plus the solution manual I had for calc was honestly easier to understand than the worked examples in the book, it had more steps. For linear Algebra you don't have that. There are only 2 lecture series on LA by Strang and Khan and they aren't all that good. I'm on my 3rd LA text and they've all been pretty bad. The mistake they make is they assume the real basic of LA are too easy and they jump immediately to these abstruse problems that no one cares about. They're almost like brain teasers. I can't even master the mechanics of LA or the notation and then they shove these hard problems in my face without teaching me how to do the real easy stuff.


He's trying to understand the problems, looking at lectures for even more understanding and is using his third LA book. I think he's putting in much more effort than you are giving him credit for...
 
  • #30
I decided to take a look at the second textbook by Hill, elementary linear algebra. It's much easier than the other two. I was able to get through two sections today having understood most of what was going on, so that's a relief.

Plus you also have to keep in mind that for about 20 years I did basically no math. I pretty much just gave up on precalculus when I was in high school. I remember being so bad that I actually thought in f(x) that f was some sort of variable.
 
  • #31
I think he's putting in much more effort than you are giving him credit for...

No one said anything about effort. We said something about using a bad strategy to learn. I don't see how the stuff you put in bold was anything but negative. In fact, it's mostly the stuff I would put in bold to show how he was going about it the wrong way. Khan and Strang's lectures may well be bad for him, but probably less so for other people, though I have no opinion on them, since I have not seen them. I used Strang's linear algebra book when I first learned it, and I'm not sure what I think of it at this point, since that was before I had figured out how to do math. I would say it's not terrible, but not as much intuition there as I would put if I wrote a linear algebra book.
Plus you also have to keep in mind that for about 20 years I did basically no math. I pretty much just gave up on precalculus when I was in high school. I remember being so bad that I actually thought in f(x) that f was some sort of variable.

This is one reason why I don't like the idea of traditional classes, and especially lectures. They are one size fits all. The ideal is tutoring one or two students at a time or some equivalent thing (going to office hours can give you a limited amount of this). I think most students aren't going to have too much difficulty with the basic "knowing how to do the basics" part. They might not be great at math, but I would expect them not to have too much trouble with basic algebra, like beginning calculus students would. However, I might expect them to still be somewhat conceptually impaired, which is part of the problem with books directed at that sort of audience. At any rate, the point is that if someone who has trouble with math wants to learn linear algebra, there SHOULD be resources out there for them to learn. But they have to realize that if they don't have a better mastery of the prereqs, the class might be above their level because the target audience (being, perhaps, the average student who winds up in the class) is above their level.
 
  • #32
chill_factor said:
Yep its true. Linear algebra is ridiculously hard and it is made harder by bad teachers.

However there's nothing you can do about it until you become a professor of mathematics and write your own book on the subject so you have to suck it up to pass the class.

Dude, if you consider Strang a "bad teacher" then I am not sure what you are looking for. I realize that certain professors will speak better to you than others but calling Strang a bad teacher? I took LA just under a year ago. I used a typical text (cant even recall the author). I personally found it too shaky and not rigorous enough. Thus, I obtained one by Shilov (much harder and abstract) and was thouroughly rewarded for that. Additionally, I supplemented the class by watching the lectures of the "bad teacher". Needless to say, I found them marvelous.

I agree that LA is more abstract than calculus. In your case, this should read that LA is less susceptible to students simply drilling the techniques and thereby "passing the class" rather then understanding material deeply.
 
  • #33
YAHA said:
Dude, if you consider Strang a "bad teacher" then I am not sure what you are looking for. I realize that certain professors will speak better to you than others but calling Strang a bad teacher? I took LA just under a year ago. I used a typical text (cant even recall the author). I personally found it too shaky and not rigorous enough. Thus, I obtained one by Shilov (much harder and abstract) and was thouroughly rewarded for that. Additionally, I supplemented the class by watching the lectures of the "bad teacher". Needless to say, I found them marvelous.

I agree that LA is more abstract than calculus. In your case, this should read that LA is less susceptible to students simply drilling the techniques and thereby "passing the class" rather then understanding material deeply.

I am not talking about the writer of the book, but about teachers assigned to linear algebra in general.
 
  • #34
Vanadium 50 said:
This is called "letting someone else do your thinking for you.



As is this.



It sounds more like you managed to get through Calc without learning how to tackle problems on your own - without solution manuals and without youtube - and now you're paying for it.

He is insinuating that the videos are doing the work for him which can be interpreted as lacking effort...
 
  • #35
YAHA said:
I agree that LA is more abstract than calculus. In your case, this should read that LA is less susceptible to students simply drilling the techniques and thereby "passing the class" rather then understanding material deeply.

Yeah, that's how I understood it.

Also, here's my two cents on the "bad professors teaching linear algebra" thing. At my school, anyway, you were fairly likely to get a professor who'd scare you into learning things--kind of a sink or swim situation. I wouldn't say that we worried about getting bad professors so much as getting one who would expect quite a lot from us. Maybe frightening your students is bad pedagogy, or maybe it's a kindness to both the good and the bad students--you either learn rigor early, or you get the chance to cut out while you still have time to choose another major. I don't know; I got "lucky" in LA as in most of my classes and had a professor who was both a good teacher and super nice.
 
  • #36
homeomorphic said:
No one said anything about effort. We said something about using a bad strategy to learn. I don't see how the stuff you put in bold was anything but negative. In fact, it's mostly the stuff I would put in bold to show how he was going about it the wrong way.
Right, great advice: don't watch lectures, don't switch textbooks when they don't work for you, and don't consult manuals that show you how to do a problem when you can't figure it out yourself. In a word what you're saying is: if you can't understand something, understand it anyway.

In any case, I went back to Richard Hill's textbook and I'm more or less cruising now.
 
  • #37
I found LA to be much easier than Calc, especially Calc II. Calc II was one of the toughest math classes I've ever taken. Many times I feel instructors take ridiculous integrations, and reverse engineer them by using a computer program.
 
  • #38
gravenewworld said:
I found LA to be much easier than Calc, especially Calc II. Calc II was one of the toughest math classes I've ever taken. Many times I feel instructors take ridiculous integrations, and reverse engineer them by using a computer program.
I think LA depends a lot on what textbook you're using, Calculus too. For instance, if I wanted to rate the difficulty of math texbooks it would be as follows (10 being the hardest, 7 or over means I can't really learn anything):
james stewart, calculus - 8
thomas, calculus - 5
strang, linear algebra - 10
hill, linear algebra - 4
carlen, linear algebra - 7
videos are much easier
krista king's calc lectures - 1
patrick jmt's calc lectures - 1
strang's linear algebra lectures - 7
sal khan's linear algebra lectures - 5
 
  • #39
Right, great advice: don't watch lectures, don't switch textbooks when they don't work for you, and don't consult manuals that show you how to do a problem when you can't figure it out yourself. In a word what you're saying is: if you can't understand something, understand it anyway.

You are totally putting words in our mouths. No one said don't watch lectures or don't switch textbooks (though some people said not to watch youtube videos, I disagree with that, just don't watch the ones that do everything for you). In fact, switching textbooks is exactly what I would tell you to do. The only thing we were saying was not to rely too much on worked examples. It's not about memorizing procedures that have no meaning to you, just you can get the answer. Your standards of "not being able to figure it out" are probably extremely low, I would suspect. As a grad student, when I do problems, I probably spend most of my time being stuck and not knowing how to figure it out myself. However, I keep thinking about it, and given enough time, I can usually figure it out.

How about what I actually told you to do, instead of what you made up that I told you to?

If you read what I said, I basically said "get a tutor". Barring financial issues, that is the ideal thing for this scenario, rather than worked solutions.


In any
case, I went back to Richard Hill's textbook and I'm more or less cruising now.

Glad you found something that worked for you. However, if you are just memorizing procedures or not understanding things deeply, it could possibly be an illusion that it is working for you. Not saying it is, just saying it could be if that's the way you try to learn.
 
  • #40
homeomorphic said:
The only thing we were saying was not to rely too much on worked examples. It's not about memorizing procedures that have no meaning to you, just you can get the answer. Your standards of "not being able to figure it out" are probably extremely low, I would suspect. As a grad student, when I do problems, I probably spend most of my time being stuck and not knowing how to figure it out myself. However, I keep thinking about it, and given enough time, I can usually figure it out.


you're right. my previous comment was a bit impulsive. if I were a young undergrad or grad looking to work in theoretical physics or experimental physics since i think there are so few jobs in theoretical physics i would do things a lot differently. Right now, I just want to get through QM then I want to get back to philosophy and literature. (I realize as a math person you probably think I'm nuts for enjoy phil and lit) Then I have to actually get a real job since my current job only pays 11 dollars an hour. However, I do have ambitions to eventually get to the point where I can understand this equation before I turn 60:

https://www.physicsforums.com/showthread.php?t=622391

So when I make my next big attempt to understand mathematical physics I am going to spend more time on trying to develop some real mathematical tools rather than the fake ones that I have now. I'm going to spend more time studying math in a much more systematic way and also spending a lot of time on hard problems that take about 3 hours to solve solely as an exercise to train my mind to think creatively. right now, i simply don't have the time. my strength is in the humanities and currently i have accomplished very little in the humanities that would make a name for myself. however, I'm very worried that when i actually start a family i probably won't have time for any kind of independent study. if you want to learn QED and all that you've got to study it 40 hours a week and it might be a very long time before i get that kind of time again. i have that time now since my job has almost no demands but it won't last forever.
 
  • #41
Right now, I just want to get through QM then I want to get back to philosophy and literature. (I realize as a math person you probably think I'm nuts for enjoy phil and lit)

No, philosophy addresses interesting questions. I'm not sure about formally studying what all the philosophers said, but I'm sure there's something to be gained there. Literature is not bad, I just never have time for it, nor do I understand it very well.


So when I make my next big attempt to understand mathematical physics I am going to spend more time on trying to develop some real mathematical tools rather than the fake ones that I have now. I'm going to spend more time studying math in a much more systematic way and also spending a lot of time on hard problems that take about 3 hours to solve solely as an exercise to train my mind to think creatively.

A hard graduate level problem might take a few days to solve, just to give you an idea, and it is meant for people who are fairly good at math. My thesis problem is taking me 3-4 years to solve, partly because I'm not very good at managing big projects like that.


however, I'm very worried that when i actually start a family i probably won't have time for any kind of independent study. if you want to learn QED and all that you've got to study it 40 hours a week and it might be a very long time before i get that kind of time again. i have that time now since my job has almost no demands but it won't last forever.

I'm not sure if you have to study 40 hours a week. Maybe if you just did 20 hours a week, it would just take you twice as long, 10 hours a week, 4 times as long, etc (the trend might not actually be linear, but the idea still works to some extent).
 
  • #42
homeomorphic said:
If you read what I said, I basically said "get a tutor". Barring financial issues, that is the ideal thing for this scenario, rather than worked solutions.

I realize old physicists and mathematicians tend to be stubborn about this but switching textbooks along with looking at different worked out solutions did more for my understanding of material than tutors ever did. More often than not its the procedure of approaching problems that has students stuck, and so solution books like the schaum's outlines were a big help in my understanding of how theory is applied and after enough practice with worked out solutions I can look at problems and solve them without help. This either or mentality you guys have about worked out solutions is leaving out the middle ground.
 
  • #43
I realize old physicists and mathematicians tend to be stubborn about this but switching textbooks along with looking at different worked out solutions did more for my understanding of material than tutors ever did.

I'm a young mathematician, not old, and I am also a tutor. I have been saying, don't rely on worked solutions too much. I personally never needed them, but if they are used very sparingly and only when you are really stuck, it probably won't hurt. A tutor will usually guide you through problems by asking you questions and giving you hints, rather than just giving you the answer. I don't know of any tutor who would just give someone a worked solution. If they just give you the answers, they are not doing a good job, unless maybe it's just some trick that they need where it doesn't really matter that much if they come up with it themselves.


More often than not its the procedure of approaching problems that has students stuck, and so solution books like the schaum's outlines were a big help in my understanding of how theory is applied and after enough practice with worked out solutions I can look at problems and solve them without help.

As long as you aren't parroting solutions, that is the thing to avoid. You can learn to parrot solutions and as long as no one throws you any curve balls, you might be able to solve problems without help after some practice. But you need to also be able to handle problems that aren't exactly like the examples you have seen, and you need to be able to know when your solution is actually correct.


This either or mentality you guys have about worked out solutions is leaving out the middle ground.

I've just been saying don't rely on them too much because that leads to just memorizing procedures, plus lack of practice in thinking for yourself.
 
  • #44
Also, maybe students sometimes get stuck on procedures because they don't even care about the concepts or aren't even aware that the concepts exist. These concepts would help them solve the problems, but since they hate concepts, they would prefer to rely on parroting solutions. They think the solution is just to copy solutions, rather than to understand the theory, but they don't realize that understanding the theory would help a lot with the solutions.
 
  • #45
At my JC, linear algebra teachers were notoriously bad. My teacher was absolutely horrible. Didn't understand the subject himself. The second or third day of class, this other student and I had to explain to him the difference between REF and RREF. He was teaching it wrongly (well, the book contradicted him), and we called him out on it. He didn't understand it.

One question we had on a test was "what is the minimum and maximum norm of <2,3>?" or some other single constant vector. He didn't understand why the students were having trouble with it for like 20 minutes. Until he just asked us to find the norm. Which was better.

Also, for the first like 15 weeks, we covered chapters 1-4. The last week we covered 5-8. We did half the semester in the last week.
 
  • #46
yeah best not to go to lecture either, or talk to your professor for help. You better go at this one alone, rather than utilize the sources that were never available before
 
  • #47
johnqwertyful said:
At my JC, linear algebra teachers were notoriously bad. My teacher was absolutely horrible. Didn't understand the subject himself. The second or third day of class, this other student and I had to explain to him the difference between REF and RREF. He was teaching it wrongly (well, the book contradicted him), and we called him out on it. He didn't understand it.

Truly amazing. I guess mathematics is one field where you can get a professorship. In philosophy for each position that opens there are 800 applications although admittedly a strong majority of them are obviously unqualified.
 
  • #48
g.lemaitre said:
Truly amazing. I guess mathematics is one field where you can get a professorship. In philosophy for each position that opens there are 800 applications although admittedly a strong majority of them are obviously unqualified.

Well, in a junior college setting, you will probably have people with master's degrees teaching at least some of the classes. Additionally, some people teach junior/community college on a part-time or adjunct basis, so they may not have "professorships," per se, even though they are professors. Not to say that either of these things makes them unqualified--I only mean that the professor in question might not have managed to obtain a PhD and tenure while not understanding linear algebra.

Of course I know nothing of johnqwertyful's particular professor and situation, so if I am at sea here, please do ignore me.
 
  • #49
My first encounter with LA was of the "throw you in the deep end" variety. It was rough, but I now feel it is one of the most beautiful areas of mathematics.

One problem I see is that intro LA classes come in two varieties. The "applied" LA courses for engineers and physicists try to cram dozens of applied tools into a short time and skip the understanding of what is going on. Courses for mathematicians tend to jump right into proofs and, if you aren't ready, will leave you behind very quickly. If you want to enjoy LA, take a solid intro proof course (something like Discrete math is good) and then take a proof-based course for mathematicians.

g.lemaitre said:
I realize as a math person you probably think I'm nuts for enjoy phil and lit

You might want to be cautious about throwing generalizations around. Real people are not stereotypes and you may find that some people you meet (and talk to on the internet) have a strong background in both the sciences and the humanities.

g.lemaitre said:
I guess mathematics is one field where you can get a professorship.

From one comment about a junior college you are able to deduce this? Again, I suggest you do a little research before jumping to conclusions.
 
  • #50
Linear of course is a much easier subject, both to use and to understand, than calculus. In fact differential calculus is precisely the science of how to use the infinitely easier subject of linear algebra locally to approximate non linear phenomena.

This question seems to be about which course is easier, and it might be rephrased "thinking is harder than following rules mindlessly". If linear algebra were taught comparably to a cookbook calculus course, it would consist only of row reducing 2 by 2, or possibly 3 by 3, matrices. Definitions of concepts such as eigenvectors would be omitted.I.e. unfortunately for the student who has never seen a real math course, linear algebra is so much easier inherently than calculus, that it is often used as the first course in learning to think abstractly. i.e. the content is so simple that a deeper approach is taken to learning it.

It is also often the first course in which higher dimensions are introduced geometrically.

So it is true that a linear algebra course, as the first abstract course, is often a hard experience. However a real calculus course, had it been offered, would have seemed much much harder.

I recommend a well written introductory linear algebra book, like that by Paul Shields, which teaches the ideas restricted to 2 and 3 dimensions, and clearly as a first step.here is a used one for $4.

http://www.abebooks.com/servlet/SearchResults?an=paul+shields&sts=t&tn=elementary+linear+algebra

or if you prefer, here is a new one for $120.

https://www.amazon.com/dp/0879011211/?tag=pfamazon01-20This is not a mickey mouse book, as it was written by a professor at stanford. i.w. do not plunge into a book like that of hoffman and kunze, if you think linear algebra is hard.
 
Last edited by a moderator:
Back
Top